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Abstract

This paper introduces a novel approach for dealing with the �curse of dimensionality�in the

case of large linear dynamic systems. Restrictions on the coe¢ cients of an unrestricted VAR

are proposed that are binding only in a limit as the number of endogenous variables tends to

in�nity. It is shown that under such restrictions, an in�nite-dimensional VAR (or IVAR) can

be arbitrarily well characterized by a large number of �nite-dimensional models in the spirit

of the global VAR model proposed in Pesaran et al. (JBES, 2004). The paper also considers

IVAR models with dominant individual units and shows that this will lead to a dynamic factor

model with the dominant unit acting as the factor. The problems of estimation and inference in

a stationary IVAR with unknown number of unobserved common factors are also investigated.

A cross section augmented least squares estimator is proposed and its asymptotic distribution

is derived. Satisfactory small sample properties are documented by Monte Carlo experiments.

Keywords: Large N and T Panels, Weak and Strong Cross Section Dependence, VAR, Global

VAR, Factor Models

JEL Classi�cation: C10, C33, C51
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Vector autoregressive models (VARs) provide a �exible framework for the analysis of complex

dynamics and interactions that exist between variables in the national and global economy. How-

ever, the application of the approach in practice is often limited to a handful of variables which

could lead to misleading inference if important variables are omitted merely to accommodate the

VAR modelling strategy. Number of parameters to be estimated grows at the quadratic rate with

the number of variables, which is limited by the size of typical data sets to no more than 5 to 7.

In many empirical applications, this is not satisfactory.

The objective of this paper is to analyze large linear dynamic systems of endogenously deter-

mined variables. In particular, we study VAR models where both the number of variables (N)

and the number of time periods (T ) tend to in�nity. In this case, parameters of the VAR model

can no longer be consistently estimated unless suitable restrictions are imposed to overcome the

dimensionality problem. Two di¤erent approaches have been suggested in the literature to deal

with this �curse of dimensionality�: (i) shrinkage of the parameter space and (ii) shrinkage of the

data. This paper proposes a novel way to deal with the curse of dimensionality by shrinking part

of the parameter space in the limit as the number of endogenous variables (N) tends to in�nity.

An important example would be a VAR model where each unit is related to a small number

of neighbors and a large number of non-neighbors. The neighborhood e¤ects are �xed and do

not change with N , but the coe¢ cients corresponding to the remaining units are small, of order

O
�
N�1�. Another model of interest arises when in addition to the neighborhood e¤ects, there is

also a �xed number of dominant units that have non-negligible e¤ects on all other units. In the case

where the VAR contains neighborhood e¤ects our speci�cation would converge to a spatiotemporal

as N !1. Finally, when the VAR includes dominant units the limiting outcome will be a dynamic

factor models. Such VAR models of growing dimension (N !1) are referred in the paper as the

in�nite-dimensional VARs, or IVARs.

The analysis of the paper also formally establishes the conditions under which the Global VAR

(GVAR) approach proposed by Pesaran, Schuermann and Weiner (JBES, 2004) is applicable. In

particular, the IVAR featuring all macroeconomic variables could be arbitrarily well approximated

by a set of �nite-dimensional small-scale models that can be consistently estimated separately in
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the spirit of the GVAR.

Besides the development of an econometric approach for the analysis of groups that belong

to a large interrelated system, the second main contribution of the paper is in considering the

problems of the estimation and inference in stationary IVAR models with known as well as an

unknown number of unobserved common factors. A simple cross sectional augmented least-squares

estimator is proposed and its asymptotic distribution derived. Satisfactory small sample properties

are documented by Monte Carlo experiments. As an illustration of the proposed approach we follow

the recent empirical analysis of real house prices across the 49 U.S. States by Holly, Pesaran and

Yamagata (2008) and show statistically signi�cant dynamic spill over e¤ects of real house prices

across the neighboring states.
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1 Introduction

Vector autoregressive models (VARs) provide a �exible framework for the analysis of complex

dynamics and interactions that exist between economic variables. The traditional VAR modelling

strategy postulates that the number of variables, denoted as N , is �xed and the time dimension,

denoted as T , tends to in�nity. The number of parameters to be estimated grows at the quadratic

rate with N and consequently the application of the approach in practice is often limited (by the

size of typical datasets) to a handful of variables.

The objective of this paper is to analyze VAR models where both N and T tend to in�nity. In

this case, parameters of the VAR model can no longer be consistently estimated unless suitable

restrictions are imposed to overcome the dimensionality problem. Two di¤erent approaches have

been suggested in the literature to deal with this �curse of dimensionality�: (i) shrinkage of the

parameter space and (ii) shrinkage of the data. Spatial and/or spatiotemporal literature shrinks

the parameter space by using the concept of spatial weights matrix, which links individual units

with the rest of the system. Alternatively, one could use techniques whereby prior distributions are

imposed on the parameters to be estimated. Bayesian VAR (BVAR) proposed by Doan, Litterman

and Sims (1984), for example, use what has become known as �Minnesota�priors to shrink the

parameters space.1 In most applications, BVARs have been applied to relatively small systems2

(e.g. Leeper, Sims, and Zha, 1996, considered 13- and 18-variable BVAR), with the focus mainly

on forecasting.3

The second approach to mitigating the curse of dimensionality is to shrink the data, along the

lines of index models. Geweke (1977) and Sargent and Sims (1977) introduced dynamic factor

models, which have more recently been generalized to allow for weak cross sectional dependence

by Forni and Lippi (2001) and Forni et al. (2000, 2004). Empirical evidence suggests that few

dynamic factors are needed to explain the co-movement of macroeconomic variables: Stock and

Watson (1999, 2002), Giannoni, Reichlin and Sala (2005) conclude that only few, perhaps two,

factors explain much of the predictable variations, while Bai and Ng (2007) estimate four factors

and Stock and Watson (2005) estimate as much as seven factors. This has led to the development

1Other types of priors have also been considered in the literature. See, for example, Del Negro and Schorfheide
(2004) for a recent reference.

2A few exceptions include Giacomini and White (2006) and De Mol, Giannone and Reichlin (2006).
3Bayesian VARs are known to produce better forecasts than unrestricted VARs and, in many situations, ARIMA

or structural models. See Litterman (1986) and Canova (1995) for further references.
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of factor-augmented VAR (FAVAR) models by Bernanke, Boivin, and Eliasz (2005) and Stock and

Watson (2005), among others.

This paper proposes a novel way to deal with the curse of dimensionality by shrinking part of

the parameter space in the limit as the number of endogenous variables (N) tends to in�nity. An

important example would be a VAR model where each unit is related to a small number of neighbors

and a large number of non-neighbors. The neighborhood e¤ects are �xed and do not change with

N , but the coe¢ cients corresponding to the remaining units are small, of order O
�
N�1�. Another

model of interest arises when in addition to the neighborhood e¤ects, there is also a �xed number

of dominant units that have non-negligible e¤ects on all other units. This set-up naturally arises

in the context of global macroeconomic modelling. When all economies are small and open, using

a multicountry DSGE model Chudik (2008) shows that the coe¢ cients of the foreign variables in

the rational expectations solution are all of order O
�
N�1�. In the case where the VAR contains

neighborhood e¤ects our speci�cation would converge to a spatiotemporal as N ! 1. Finally,

when the VAR includes dominant units the limiting outcome will be a dynamic factor models.

Such VAR models will be referred as the in�nite-dimensional VARs, or IVARs.

The analysis of the paper also provides a link between data and parameter shrinkage approaches

to mitigating the curse of dimensionality. By imposing limiting restrictions on some of the para-

meters of the VAR we e¤ectively end up with a data shrinkage. We apply the concept of strong

and weak Cross Section (CS) dependence (introduced by Pesaran and Tosetti, 2007) in the context

of IVARs and show that only strong CS dependence can be �transmitted�through O
�
N�1� coe¢ -

cients. This �nding links our analysis to the factor models by showing that dominant unit becomes

(in the limit) a dynamic common factor for the remaining units in a large system of endogenously

determined variables. Static factor models are also obtained as a special case of IVAR. Last but

not least, this paper formally establishes the conditions under which the Global VAR (GVAR)

approach proposed by Pesaran, Schuermann and Weiner (2004) is applicable.4 In particular, the

IVAR featuring all macroeconomic variables could be arbitrarily well approximated by a set of

�nite-dimensional small-scale models that can be consistently estimated separately in the spirit of

4GVAR model has been used to analyse credit risk in Pesaran, Schuermann, Treutler and Weiner (2006) and
Pesaran, Schuerman and Treutler (2007). Extended and updated version of the GVAR by Dees, di Mauro, Pesaran
and Smith (2007), which treats Euro area as a single economic area, was used by Pesaran, Smith and Smith (2007)
to evaluate UK entry into the Euro. Global dominance of the US economy in a GVAR model is explicitly considered
in Chudik (2007). Further developments of a global modelling approach are provided in Pesaran and Smith (2006).
Garratt, Lee, Pesaran and Shin (2006) provide a textbook treatment of GVAR.
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the GVAR.

Besides the development of an econometric approach for the analysis of groups that belong to a

large interrelated system, the second main contribution of the paper is in considering the problems of

the estimation and inference in stationary IVAR models with known as well as an unknown number

of unobserved common factors. Our set-up extends the analysis of Pesaran (2006) to dynamic

models where all variables are determined endogenously. A simple cross sectional augmented least-

squares estimator (or CALS for short) is proposed and its asymptotic distribution derived. Small

sample properties of the proposed estimator are investigated through Monte Carlo experiments. As

an illustration of the proposed approach we follow the recent empirical analysis of real house prices

across the 49 U.S. States by Holly, Pesaran and Yamagata (2008) and show statistically signi�cant

dynamic spillover e¤ects of real house prices across the neighboring states.

The remainder of this paper is organized as follows. Section 2 outlines IVAR model, introduces

limiting restrictions, and provides few examples, which link IVAR with the literature. Section 3

investigates cross section dependence in IVAR models where key asymptotic results are provided.

Section 4 focusses on estimation of a stationary IVAR. Section 5 presents Monte Carlo evidence

and a spatiotemporal model of the US house prices is presented in Section 6. The �nal section

o¤ers some concluding remarks. Proofs are provided in the Appendix.

A brief word on notation: j�1(A)j � ::: � j�n(A)j are the eigenvalues of A 2 Mn�n, where

Mn�n is the space of real-valued n � n matrices. kAkc � max
1�j�n

Pn
i=1 jaij j denotes the maximum

absolute column sum matrix norm of A, kAkr � max
1�i�n

Pn
j=1 jaij j is the absolute row-sum matrix

norm of A.5 kAk =
p
% (A0A) is the spectral norm of A; % (A) � max

1�i�n
fj�i (A)jg is the spectral

radius of A.6 Row i of A is denoted by a0i and the column i is denoted as�ai. All vectors are column

vectors. Row i of A with the ith element replaced by 0 is denoted as a0�i. Row i of A 2Mn�n with

the element i and the element 1 replaced by 0 is a0�1;�i = (0; ai2; :::; ai;i�1; 0; ai;i+1; :::; ai;iN ). The

matrix constructed from A by replacing its �rst column with a column vector of zeros is denoted

by _A�1. Joint asymptotics in N;T ! 1 are represented by N;T
j! 1. an = O(bn) states the

deterministic sequence an is at most of order bn. xn = Op (yn) states random variable xn is at most

of order yn in probability. N is the set of natural numbers, and Z is the set of integers. We use K
5The maximum absolute column sum matrix norm and the maximum absolute row sum matrix norm are sometimes

denoted in the literature as k�k1 and k�k1, respectively.
6Note that if x is a vector, then kxk =

p
% (x0x) =

p
x0x corresponds to the Euclidean length of vector x.
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and � to denote large and small positive constants that do not vary with i; t;N or T . Convergence

in distribution and convergence in probability is denoted by d! and
p!, respectively. Symbol q:m:!

represents convergence in quadratic mean.

2 In�nite-Dimensional Vector Autoregressive Models

Suppose there are N cross section units indexed by i 2 S � f1; ::; Ng � N. Depending on empirical

application, units could be households, �rms, regions, countries, or macroeconomic indicators in a

given economy. Let xit denote the realization of a random variable belonging to the cross section

unit i in period t, and assume that xt = (x1t; :::; xNt)
0 is generated according to the following

stationary structural VAR model

A0xt = A1xt�1 +A2"t, (1)

where one lag is assumed for the simplicity of exposition, A0, A1 and A2 are N � N matrices of

unknown coe¢ cients, and innovations collected into N�1 vector "t = ("1t; :::; "Nt)0 are IID (0; IN ).

The model (1), for example, arises as the rational expectations solution of a multi-country DSGE

model. (See, for example, Pesaran and Smith, 2006). Assuming matrixA0 is invertible, the reduced

form of structural model (1) is:

xt = �xt�1 + ut, (2)

where the vector reduced-form errors ut is given by the following �spatial�model

ut = R"t, (3)

� = A�10 A1, and R = A�10 A2. Focus of this paper is on a sequence of reduced-form models (2) of

growing dimension (N !1), where the elements of � and R (and hence the variance matrix of ut)

depend on N . But to simplify the notations we do not show this dependence explicitly, although it

will be understood throughout that all the parameters and the dimension of the random variables xt

and ut vary with N , unless otherwise stated. The sequence of models (2) and (3) with dim(xt) = N

growing will be referred to as the in�nite-dimensional VAR(1) model.

To allow for neighborhood e¤ects it is convenient to decompose � into two components: a
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sparse N � N matrix matrix, �a, with �xed elements (that do not vary with N) which captures

the neighborhood e¤ects, and a complement matrix, �b, characterizing the remaining interactions,

so that � = �a +�b. An example of �a is given by

�a =

0BBBBBBBBBBBBBB@

�11 �12 0 0 0

�12 �22 �23 0 0

0 �32 �33 �34 0

0 0 �43 �44
. . .

. . . . . . �N�1;N

0 0 0 �N�1;N �NN

1CCCCCCCCCCCCCCA
, (4)

where the nonzero elements are �xed coe¢ cients that do not change with N . This represents

an �approximate line�model where each unit, except the �rst and the last unit has one left and

one right neighbor. In contrast the individual elements of �b are of order O(N�1), in particular���bij�� < K
N for any i; j 2 f1; ::; Ng and any N 2 N. Equation for unit i 2 f2; ::; N � 1g can be

written as

xit = �i;i�1xi�1;t�1 + �iixi;t�1 + �i;i+1xi+1;t�1 + �
0
bixt�1 + uit. (5)

Next section shows that under weak CS dependence of errors fuitg, �0bixt�1
q:m:! 0, and Section 4

considers problem of estimation of the individual-speci�c parameters
�
�i;i�1; �ii; �i;i+1

	
. We refer

to this model as a two-neighbor IVAR model which we use later for illustrative purposes as well as

in the Monte Carlo experiments.

The above decomposition of matrix � is a pivotal example of limiting restrictions developed in

this paper. More generally, we have

� = D S+�b; (6)

where as before, the individual elements of matrix �b are (uniformly) of order O
�
N�1�,

D =

0BBBBBBB@

�01 0 � � � 0

0 �02
...

. . . 0

0 0 �0N

1CCCCCCCA
, (7)
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�i is an hi � 1 dimensional vector containing the unknown coe¢ cients to be estimated for unit

i 2 f1; ::; Ng, hi is bounded in N , h =
PN
i=1 hi, and S is a known h � N matrix partitioned as

S = (S1;S2; :::;SN )
0, with Si being the N�hi selection matrix, which de�nes the neighbors for unit

i as in the example above. S could also be related to a spatial weights matrix as in the following

example.

Example 1 Consider the following spatiotemporal model

xt = �xSxxt�1 + ut, (8)

ut = �uSuut + "t, (9)

where Sx and Su are N�N spatial weights matrices. Spatiotemporal model (8)-(9) is a special case

of the model (2)-(3) by setting

R = (I� �uSu)�1 , �i = �x for i 2 f1; ::; Ng , S = Sx, and �b = 0.

Remark 1 Note, however, that not all types of structural models (1) have reduced forms that satisfy

the restrictions given by (6). For example, consider the spatiotemporal model:

xt = �Sxxt + �xt�1 + "t. (10)

Assuming matrix (I� �xSx) is invertible, the reduced form of spatiotemporal model (10) is model

(2) with � = � (I� �xSx)�1 and R = (I� �xSx)�1. For the known spatial weights matrix Sx

and unknown parameters �x and �, the reduced form coe¢ cient matrix � cannot be decomposed as

in equation (6), where the matrix S is assumed to be known, f�ig and �b are unknown, and the

elements of �b are uniformly O
�
N�1�.

3 Cross Sectional Dependence in Stationary IVAR Models

Here we investigate the correlation pattern of fxitg, over time, t, and across the cross section units,

i. Unlike the time index t which is de�ned over an ordered integer set, the cross section index, i,

refers to an individual unit of an unordered population distributed over space or more generally over

networks. To avoid having to order the cross section units we make use of the concepts of weak
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and strong cross section dependence recently developed in Pesaran and Tosetti (2007, hereafter

PT). A process fxitg is said to be cross sectionally weakly dependent (CWD) with respect to a

pre-determined information set, It�1, if for all weight vectors, wt = (w1t; :::; wNt)
0, satisfying the

�granularity�conditions7

kwtk = O
�
N� 1

2

�
, (11)

wjt
kwtk

= O
�
N� 1

2

�
for any j � N , (12)

we have

lim
N!1

V ar
�
w0t�1xt j It�1

�
= 0, for all t 2 T .

Since we will be dealing with stationary processes in what follows we con�ne our analysis to time

invariant weight vectors, w, and information sets, I = ;. Accordingly, we adopt the following

concept.

De�nition 1 Stationary process fxit; i 2 S; t 2 T ; N 2 Ng, generated by the IVAR model (2), is

said to be cross sectionally weakly dependent (CWD), if for any sequence of non-random vectors of

weights w satisfying the granularity conditions (11)-(12),

lim
N!1

V ar (xwt j I) = lim
N!1

V ar (xwt) = 0, (13)

where xwt = w0xt. fxitg is said to be cross sectionally strongly dependent (CSD) if there exists a

sequence of weights vectors w satisfying (11)-(12) and a constant K such that

lim
N!1

V ar (xwt) � K > 0. (14)

Necessary condition for covariance stationarity for �xed N is that all eigenvalues of � lie inside

of the unit circle. For a �xed N , and assuming that maxi j�i (�)j < 1, the Euclidean norm of

�` de�ned by
�
Tr
�
�`�`0

��1=2 ! 0 exponentially in `; and the process xt =
P1
`=0�

`ut�` will

be absolute summable, in the sense that the sum of absolute values of the elements of �`, for
7Condition (12) is understood as

wjt
kwtk

� Kp
N
, for any j 2 f1; ::; Ng and any N 2 N,

where constant K <1 does not depend on N nor on j.
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` = 0; 1; ::: converge. Observe that as N ! 1, V ar (xit) need not necessarily be bounded in N if

maxi j�i (�)j < 1� �. For example, consider the IVAR(1) model with

� =

0BBBBBBBBBB@

' 0 0 � � � 0

 ' 0 � � � 0

0  ' 0

...
. . . . . . 0

0 0  '

1CCCCCCCCCCA
,

and assume that var (uit) is uniformly bounded away from zero asN !1. It is clear all eigenvalues

of� are inside the unit circle if and only if j'j < 1, regardless the value of the neighboring coe¢ cient

 . Yet the variance of xNt increases in N without bounds at an exponential rate for j j > 1�j'j.8

Therefore, a stronger condition than stationarity is required to rule out variances of xit exploding

as N !1. This is set out in the following assumptions.

ASSUMPTION 1 Individual elements of double index process of errors fuit; i 2 S; t 2 T g are

random variables de�ned on the probability space (
;F ; P ). ut is independently distributed of ut0,

for any t 6= t0 2 T . For each t 2 T , ut has mean and variance,

E (ut) = 0, E
�
utu

0
t

�
= �,

where � is an N �N symmetric, nonnegative de�nite matrix, such that 0 < �2ii < K <1 for any

i 2 S and �2ii = V ar (uit) is the i-th diagonal element of covariance matrix �.

ASSUMPTION 2 (Coe¢ cients matrix � and CWD ut)

k�k < 1� �, (15)

k�k = O
�
N1��� , (16)

where � > 0 is an arbitrarily small positive constant.
8 It can be shown that

V ar fxNtg =
NX
j=1

 2(N�j)
1X
`=0

�2N�j+1;`'
2`,

where �k` = 1
(k�1)!

k�2Q
j=0

(`+ k � 1� j) for k > 1 and �1` = 1.
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Remark 2 Assumption 1 and equation (16) of Assumption 2 imply fuitg is CWD.

Remark 3 Condition (15) of Assumption 2 is a su¢ cient condition for covariance stationarity

and also delivers bounded variance of xit, as N ! 1. Note that Assumption 2 also rules out

cases where strong cross sectional dependence arises due to a particular unit (or units) since both

k�kc <
p
N k�k = O

�p
N
�
and k�kc cannot diverge to in�nity at the rate N .

Proposition 1 Consider model (2) and suppose that Assumptions 1 and 2 hold. Then for any

arbitrary sequence of �xed weights w satisfying condition (11), and for any t 2 T ,

lim
N!1

V ar (xwt) = 0. (17)

Proposition 1 has several interesting implications. Suppose that unit i has a �xed number

of neighbors, j = 1; 2; ::; p, for which coe¢ cients �ij = O (1), while the in�uence of each of the

remaining units on the unit i through coe¢ cient matrix � is small. In particular, consider the

following decomposition of the ith row of matrix �, denoted as �0i, into a possibly sparse vector

�0ai and the remaining coe¢ cients collected into vector �
0
bi:

ASSUMPTION 3 Let K � S be a non-empty index set. For any i 2 K, �i = �ai + �bi, where

k�bik =

0@ NX
j=1

�2bij

1A1=2 = O
�
N� 1

2

�
. (18)

Remark 4 Obvious examples of the decomposition of �i is when �
0
ai = (0; :::; 0; �ii; 0; :::; 0), and

�0bi = (�i1; :::; �i;i�1; 0; �i;i+1; :::; �iN ), where �ii does not depend on N , and the left-right neigbour-

hood model where �0ai = (0; :::; 0; �i;i�1; �ii; �i;i+1; 0:::; 0) and �
0
bi = (�i1; :::�i;i�2; 0; 0; 0; �i;i+2:::; �iN )

,

with �i;i�1; �ii and �i;i+1 being �xed parameters that do not vary with N .

Remark 5 As we shall see in Section 4, for estimation and inference the following slightly stronger

condition on the row norm of �bi will be needed.

k�bikr = O
�
N�1� .

Remark 6 Assumption 3 implies that for i 2 K,
PN
j=1 �bij � k�bikc = O (1). Therefore, it is

possible for the dependence of each individual unit on the rest of the units in the system to be large
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even if �ai = 0. However, as we shall see below, in the case where fxitg is a CWD process, vector

�bi does not play a role in the model for the i
th cross section unit as N !1.

Corollary 1 Consider model (2) and suppose Assumptions 1-3 hold. Then,

lim
N!1

V ar
�
xit � �0aixt�1 � uit

�
= 0, for i 2 K. (19)

Observe that if �ii is the only nonzero element of �ai, then the regression model for unit i

completely de-couples from the rest of the system as N !1, in the sense that

lim
N!1

V ar (xit � �iixi;t�1 � uit) = 0.

The above corollary in e¤ect states that in econometric modelling of xit one can ignore the

e¤ects of those cross section units that have zero entries in �ai as N becomes large, so long as xt

is a CWD process.9

3.1 Contemporaneous Dependence: Spatial or Network Dependence

An important form of cross section dependence is contemporaneous dependence across space. The

spatial dependence, pioneered by Whittle (1954), models cross section correlations by means of

spatial processes that relate each cross section unit to its neighbor(s). Spatial autoregressive and

spatial error component models are examples of such processes. (Cli¤ and Ord, 1973, Anselin,

1988, and Kelejian and Robinson, 1995). However, it is not necessary that proximity is measured

in terms of physical space. Other measures such as economic (Conley, 1999, Pesaran, Schuermann

and Weiner, 2004), or social distance (Conley and Topa, 2002) could also be employed. All these

are examples of dependence across nodes in a physical (real) or logical (virtual) networks. In the

case of the IVAR model, de�ned by (2) and (3), such contemporaneous dependence can be modelled

through an N �N network topology matrix R.10,11 For example, in the case of a �rst order spatial

9Appropriate rates for N ,T
j!1 needed for inference about the nonzero parameters in �ai are established Section

4.
10A network topography is usually represented by graphs whose nodes are identi�ed with the cross section units,

with the pairwise relations captured by the arcs in the graph.
11 It is also possible to allow for time variations in the network matrix to capture changes in the network structure

over time. However, this will not be pursued here.
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moving average model, R would take the form

RSMA = IN + �s

0BBBBBBBBBBBBBB@

0 1 0 0 : : : 0 0 0

1=2 0 1=2 0 : : : 0 0 0

0 1=2 0 1=2 : : : 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0 : : : 1=2 0 1=2

0 0 0 0 : : : 0 1 0

1CCCCCCCCCCCCCCA
;

where �s is the spatial moving average coe¢ cient.

The contemporaneous nature of dependence across i 2 S is fully captured by R. As shown in

PT the contemporaneous dependence across i 2 S will be weak if the maximum absolute column

and row sum matrix norm of R are bounded, namely if kRkc kRkr < K < 1. It turns out that

all spatial models proposed in the literature are in fact examples of weak cross section dependence.

More general network dependence such as the �star�network provides an example of strong con-

temporaneous dependence that we shall consider below. The form of R for a typical star network

is given by

RStar =

0BBBBBBBBBB@

1 0 � � � 0 0

r21 1 � � � 0 0

r31 0 � � � 0 0

...
...

... 1 0

rN1 0 � � � 0 1

1CCCCCCCCCCA
;

where
NX
j=2

rj1 = O(N).

The IVAR model when combined with ut = R"t yields an in�nite-dimensional spatiotemporal

model. The model can also be viewed more generally as a �dynamic network�, with R and �

capturing the static and dynamic forms of inter-connections that might exist in the network.

3.2 IVAR Models with Strong Cross Sectional Dependence

Strong dependence in IVAR model could arise as a result of CSD errors fuitg, or could be due to

dominant patterns in the coe¢ cients of �, or both. Strong cross section dependence could also

arise in the case of residual common factor models where the weighted averages of factor loadings
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do not converge to zero.12 Section 4 considers estimation and inference in the case of stationary

CSD IVAR models with unobserved common factors and/or deterministic trends. An example of

a stationary IVAR model where the column corresponding to unit i = 1 in matrices �, and R is

dominant is provided below.

The following assumption postulates that for any i, coe¢ cient vector �i can be decomposed

into a sparse vector �ai = (�i1; 0; :::; 0; �ii; 0; :::; 0)
0 and a vector �bi = ��1;�i where ��1;�i =�

0; �i2; :::; �i;i�1; 0; �i;i+1; :::; �iN
�0.

ASSUMPTION 4 Let � =
PN
i=1
��ie

0
i =

��1e
0
1 +

_��1 where ��i = (�1i; :::; �Ni)
0 is the ith column

of �; ei is an N�1 selection vector for unit i, with the ith element of ei being one and the remaining

elements zero. Denote by _��1 the matrix constructed from � by replacing its �rst column with a

vector of zeros, and note that _��1 =
PN
i=2
��ie

0
i. Suppose as N !1




��1



r
= O (1) . (20)

Further, suppose that 

��1;�i

r = O
�
N�1� uniformly for all i 2 N, (21)

namely there exists a constant K such that



��1;�i

r < K

N
for any i 2 S and any N 2 N.

ASSUMPTION 5 (Stationarity) k�kr < � < 1 for any N 2 N.

ASSUMPTION 6 The N�1 vector of errors ut is generated by the �spatial�model (3). E (utu0t) =

� = RR0 is time invariant, where R =
PN
i=1�rie

0
i =�r1e

0
1 +

_R�1, and�ri = (r1i; :::; rNi)
0 is the ith

column of matrix R. Suppose as N !1




 _R�1


2 = O
�
N1��� , (22)

k�r1kr = O (1) , (23)

12See Pesaran and Toesetti (2007, Theorem 16).
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and

lim
N!1

kr�1;�ik = 0 for any i 2 N, (24)

where � is an arbitrarily small constant, r�1;�i = (0; ri1; :::; ri;i�1; 0; ri;i+1; :::; riN )
0, and rij denotes

the (i; j) element of matrix R.

Remark 7 Assumptions 4 and 6 imply matrix � has one dominant column and matrix R has at

least one dominant column, but the absolute column sum for only one column could rise with N at

the rate N . Part (21) of Assumption 4 allows the equation for unit i 6= 1 to de-couple from the

equations for units j 6= 1, for any j 6= i, as N !1.

Remark 8 Using the maximum absolute column/row sum matrix norms rather than eigenvalues

in principle allows us to make a distinction between cases where dominant e¤ects are due to a

particular unit (or a few units), and when there is a pervasive unobserved factor that makes all

column/row sums unbounded. Eigenvalues of the covariance matrix 
 will be unbounded in both

cases and it will not be possible from the knowledge of the rate of the expansion of the eigenvalues

of 
, � and/or R to known which one of the two cases are in fact applicable.

Remark 9 As it will become clear momentarily, conditional on x1t and its lagged values, process

fxitg become cross sectionally weakly dependent. We shall therefore refer to unit i = 1 as the

dominant unit.

Remark 10 It follows that under Assumptions 5 and 6 the IVAR model speci�ed by (2) and (3)

is stationary for any N , and the variance of xit will be uniformly bounded.

Proposition 2 Under Assumptions 4-6 and as N ! 1, equation for the dominant unit i = 1 in

the IVAR model de�ned by (2) and (3) reduces to

x1t � # (L; e1) "1t
q:m:! 0, (25)

where # (L; e1) =
P1
`=0

�
e01��̀r1

�
L`. Furthermore, for any �xed sequence of weights w satisfying

condition (11),

xwt � # (L;w) "1t
q:m:! 0. (26)
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The model for unit i = 1 can be approximated by an AR(p1) process, which does not depend

on the realizations from the remaining units as N !1. Let the lag polynomial

a (L; p1) � #�1 (L; e1) (27)

be an approximation of #�1 (L; e1). Then equation for unit i = 1 can be written as

a (L; p1)x1t � "1t. (28)

The following proposition presents mean square error convergence results for the remaining cross

section units.

Proposition 3 Consider system (2), let Assumptions 4-6 hold and suppose that the lag polynomial

# (L; e1) de�ned in Proposition 2 is invertible. Then as N ! 1, equations for cross section unit

i 6= 1 in the IVAR model de�ned by (2) and (3) reduce to

(1� �iiL)xit � �i (L)x1t � rii"it
q:m:! 0; for i = 2; 3; ::: (29)

where

�i (L) = �i1L+
�
ri1 + #

�
L;��1;�i

�
L
�
#�1 (L; e1) ;

and

#
�
L;��1;�i

�
=

1X
`=0

�
�0�1;�i�

`�r1

�
L`, for i > 1.

Remark 11 Exclusion of the current value of x1t from (29) is justi�ed only if ri1 = 0. But even

in this case xit will depend on lagged values of x1t.

Remark 12 Cross section unit 1 becomes (in the limit) a dynamic common factor for the remain-

ing units in the IVAR model. Note that setting x1t = ft, (29) can be written as13

(1� �iiL)xit � rii"it + �i (L) ft, for i > 1. (30)

Remark 13 Conditional on fx1t; x1;t�1; x1;t�2; ::::g, the process fxitg for i > 1 is CWD.
13x1t could be equivalently approximated by cross sectional weighted averages of xt and its lags, namely

xwt; xw;t�1; :::.
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Remark 14 For �1 = 0 and ��i = 0, we obtain from (29) the following static factor model as a

special case

(1� �iiL)xit � rii"it +

�
ri1
r11

�
ft, for i > 1, (31)

where ft = x1t.

We now turn our attention to the problems of estimation and inference in IVAR models. In

what follows we consider the relatively simple case where there are no dominant units, but allow

for the possibility of unobserved common factors. The analysis of IVAR models featuring both

unobserved common factors, ft, and � matrices with unbounded maximum absolute column sum

matrix norms is provided in a supplement, which is available from the authors on request.

4 Estimation of a Stationary IVAR

Assume xt = (x1t; :::; xNt)
0 is generated according to the following factor-augmented IVAR(1):

� (L) (xt ��� �f t) = ut, (32)

for t = 1; 2; :::; T , where the vector of errors ut is generated by spatial model (3), namely ut = R"t,

� (L) = IN � �L, � is N � N dimensional matrix of unknown coe¢ cients, � = (�1; :::; �N )
0 is

N � 1 dimensional vector of �xed e¤ects, ft is m � 1 dimensional vector of unobserved common

factors (m is �xed but otherwise unknown), � =(
1;
2; :::;
N )
0 is N �m dimensional matrix of

factor loadings with its i-th row denoted as 
 0i, and "t = ("1t; "2t:::; "Nt)
0 is the vector of error terms

assumed to be independently distributed of ft0 8t; t0 2 f1; ::; Tg.

Without major di¢ culties, one could also add observed common factors and/or additional deter-

ministic terms to the equations in (32), but in what follows we abstract from these for expositional

simplicity. System (32) models deviations of endogenous variables from common factors in a VAR.

Alternatively, one could introduce common factors directly in the residuals. This extension is

pursued in Pesaran and Chudik (2008), who focus on estimation of IVARs with dominant units.14

De�ne the following vector of weighted averages xWt = W0xt, where W = (w1;w2; :::;wN )
0

and fwjgNj=1 are mw � 1 dimensional vectors. Subscripts denoting the number of groups are again
14This extension is not straightforward as it introduces in�nite-lag polynomials in the corresponding auxiliary

cross-section augmented regressions for the individual units.
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omitted where not necessary, in order to keep the notations simple. MatrixW does not correspond

to any spatial weights matrix. It is any arbitrary matrix of pre-determined weights satisfying the

following granularity conditions15

kWk = O
�
N� 1

2

�
, (33)

kwjk
kWk = O

�
N� 1

2

�
for any j � N . (34)

We consider the problem of estimating the parameters of equation i 2 N in a non-nested

sequence of models (32) as both N and T tend to in�nity, where � can be decomposed as

� = D S+�b. See (6). As an important example we consider the two-neighbor IVAR model

de�ned by (5). In the case of this model the vector of unknown coe¢ cients of interest for the ith

equation is on the ith row of D, de�ned by (7) namely �i =
�
�i;i�1; �ii; �i;i+1

�0 for i =2 f1; Ng, with
hi = 3, and the corresponding N � 3 matrix Si = (ei�1; ei; ei+1) in S = (S1;S2; :::;SN )

0 ; which

selects the unit i and the left and the right neighbors of unit i.16 In what follows we set �it = S
0
ixt;

and note that it reduces to (xi�1;t; xit; xi+1;t)0 in the case of the two-neighbor IVAR model.

We suppose that the following assumptions hold for any N 2 N and i 2 f1; ::; Ng, unless

otherwise stated.

ASSUMPTION 7 (General limiting restrictions) The ith row of matrix � can be decomposed as,

�i = Si�i + �bi, (35)

where

k�bikr = max
j2f1;::;Ng

���bij�� < K

N
, (36)

Si is predetermined and known N �hi dimensional matrix, kSikc < K, and hi < K. The unknown

coe¢ cients and the �xed e¤ects are bounded, namely k�ik < K and j�ij < K. For any i 2 N, there

exists constant N0 2 N such that the vector of unknown coe¢ cients �i do not change with N > N0.

15Condition (34) is understood as

kwjk
kWk �

Kp
N
, for any j 2 f1; ::; Ng and any N 2 N,

where constant K <1 does not depend on N nor on j.
16The �rst and the last unit has only one neighbor.
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ASSUMPTION 8 (Stationarity) k�k < � < 1.

ASSUMPTION 9 (Weakly dependent errors with �nite fourth moments) Innovations f"jtgNj=1
are identically and independently distributed with mean 0, unit variances and �nite fourth moments.

Furthermore, matrix R has bounded row and column matrix norms.

ASSUMPTION 10 (Available observations) Available observations are x0;x1; :::;xT with the

starting values x0 =
P1
`=0�

`R" (�`) +�+ �f0.17

ASSUMPTION 11 (Common factors) Unobserved common factors f1t; :::; fmt follow stationary

MA(1) processes:

fst =  s (L) "fst; for s = 1; ::;m, (37)

where polynomials  s (L) =
P1
`=0  s`L

` are absolute summable, "fst � IID
�
0; �2"fs

�
, and the

fourth moments of "fst are bounded, E
�
"4fst

�
<1. "fst is independently distributed of "t0 for any

t; t0 2 T , and any s 2 f1; ::;mg. Polynomials  s (L) and variances �2"fs , for s 2 f1; ::;mg, do not

change with N and the covariance matrix E (ftf 0t) is positive de�nite.

ASSUMPTION 12 (Bounded factor loadings) k
ik < K.

Remark 15 (Eigenvalues of �) Assumption 8 implies polynomial � (L) is invertible (for any

N 2 N) and

% (�) < � < 1. (38)

This is in line with the �rst part of Assumption 2 and is therefore su¢ cient for stationarity of xt for

any N 2 N. Also, as noted in Section 3, this assumption rules out explosive variance of individual

elements of the vector xt as N ! 1. Furthermore, since k�kc �
p
N k�k, Assumption 8 rules

out cases where k�kc diverges to in�nity at the rate N . Hence the dominance of a particular unit

or units due to the coe¢ cient matrix � is also ruled out by this assumption.

Remark 16 The spectral norm of covariance matrix E (utu0t) = � is bounded in N under As-

sumption 9, since kRR0k � kRR0kr � kRkr kRkc.18 ut is therefore a cross sectionally weakly

dependent process, which, as shown in Pesaran and Tosetti (2007), includes all commonly used

spatial processes in the literature.
17We use notation " (�`) instead of "�` in order to avoid possible confusion with the notation used in previous

sections.
18kAk �

p
kAkc kAkr for any matrix A.
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Multiplying system (32) by the inverse of polynomial � (L) and then byW0 yields

xWt = �W + �W ft + �Wt, (39)

where xWt =W
0xt, �W =W0�, �W =W0�, �Wt =W

0�t, and

�t =

1X
`=0

�`ut�`. (40)

Under Assumption 9, futg is weakly cross sectionally dependent and therefore

kV ar (�Wt)k =







1X
`=0

W0�`��0`W






 ,
� kWk2 k�k

1X
`=0




�`


2 ,
= O

�
N�1� , (41)

where kWk2 = O
�
N�1� by condition (33), k�k = O (1) by Assumption 9 (see Remark 16) andP1

`=0



�`

 � P1
`=0 k�k

` = O (1) under Assumption 8. This implies �Wt = Op

�
N� 1

2

�
and the

unobserved common factors can be approximated as

�
�
0
W�W

��1
�
0
W (xWt ��W ) = ft +Op

�
N� 1

2

�
, (42)

provided that the matrix �
0
W�W is nonsingular. It can be inferred that the full column rank of

�W is important for the estimation of unit-speci�c coe¢ cients. Pesaran (2006) shows that the full

column rank is, however, not necessary if the object of interest is a panel estimation of the common

mean of the individual coe¢ cients as opposed to the consistency of individual-speci�c estimates.

Using system (32), equation for unit i can be written as:

xit � �i � 
 0ift = �0iS0i (xt�1 ��� �f t�1) + �i;t�1 + uit, (43)

where

�it = �
0
ib�t = Op

�
N� 1

2

�
, (44)
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since the vector �ib satis�es condition (33) under Assumption 7. It follows from equation (39) that


 0ift � �0ia�f t�1 = b0i1xWt + b
0
i2xW;t�1 � (bi1 + bi2)

0�W � b0i1�Wt � b0i2�W;t�1, (45)

where bi1 = 
 0i

�
�
0
W�W

��1
�
0
W and bi2 = ��0iS0i�

�
�
0
W�W

��1
�
0
W . Substituting equation (45)

into equation (43) yields

xit = ci + �
0
iS
0
ixt�1 + b

0
i1xWt + b

0
i2xW;t�1 + uit + qit, (46)

where ci = �i � �0ia�� (bi1 + bi2)
0�W , and

qit = �i;t�1 � b0i1�Wt � b0i2�W;t�1 = Op

�
N� 1

2

�
. (47)

Consider the following auxiliary regression based on the equation (46):

xit = g
0
it�i + �it, (48)

where �it = uit+ qit, �i =
�
ci; �

0
i;b

0
i1;b

0
i2

�0 is ki� 1 vector of coe¢ cients associated to the vector of
regressors git =

�
1; �0i;t�1;x

0
Wt;x

0
W;t�1

�0
, and ki = 1 + hi + 2mw. Let b�i be the least squares (LS)

estimator of �i :

b�i =  TX
t=1

gitg
0
it

!�1 TX
t=1

gitxit. (49)

We denote the estimator of coe¢ cients �i given by the corresponding elements of the vector b�i
as the cross section augmented least squares estimator (or CALS for short), denoted as b�i;CALS .
Asymptotic properties of b�i (and b�i;CALS in the case where the number of unobserved common
factors is unknown) are the objective of this analysis as N and T tend to in�nity.

First we consider the case where the number of unobserved common factors equals to the

dimension of xWt (m = mw), and make the following additional assumption.

ASSUMPTION 13 (Identi�cation of �i) There exists T0 and N0 such that for all T � T0;

N � N0 and for any i 2 f1; ::; Ng,
�
T�1

PT
t=1 gitg

0
it

��1
exists, CiN = E (gitg

0
it) is positive de�nite,

and


C�1iN

 = O (1).
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Remark 17 Assumption 13 implies �W is a square, full rank matrix and, therefore, the number

of unobserved common factors is equal the number of columns of the weight matrixW (m = mw).

In cases where m < mw, full augmentation of individual models by (cross sectional) averages is not

necessary.

Theorem 1 Let xt be generated by model (32), Assumptions 7-13 hold, and W is any arbitrary

(pre-determined) matrix of weights satisfying conditions (33)-(34) and Assumption 13. Then as

N;T
j! 1 (in no particular order), the estimator b�i de�ned in equation (49) has the following

properties.

a)

b�i � �i p! 0:

b) If in addition T=N ! {, with 0 � { <1,

p
T

�ii;N
C

1
2
iN (b�i � �i) D! N (0; Ik1) , (50)

where �2ii;N = V ar (uit) = E (e0iRR
0ei), and C

1
2
iN is square root of positive de�nite matrix

CiN = E (gitg
0
it). Also

c)

CiN � bCiN p! 0, and �ii;N � b�ii;N p! 0;

where bCiN = 1

T

TX
t=1

gitg
0
it; b�2ii;N = 1

T

TX
t=1

bu2it, (51)

and buit = xit � g0itb�i.
Remark 18 Suppose that in addition to the assumptions of Theorem 1, the limits of C�1iN and

�2ii;N , as N !1; exist and are given by C�1i1, and �2ii;1; respectively.19 Then (50) yields

p
T (b�i � �i) D! N

�
0; �2ii;1C

�1
i;1

�
. (52)

19Su¢ cient condition for limN!1CiN to exist is the existence of the following limits (together with Assumptions
7-12): limN!1 S

0
i�, limN!1 S

0
i�, limN!1W

0�, limN!1W
0�, and limN!1

P1
`=0 S

0
i�

`RR0�0`Si.
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Consider now the case where the number of unobserved common factors is unknown, but it is

known that mw � m. Since the auxiliary regression (48) is augmented possibly by a larger number

of cross section averages than the number of unobserved common factors, we have potential problem

of multicollinearity (as N !1). But this observation has no bearings on estimates of �i so long as

the space spanned by the unobserved common factors including a constant and the space spanned

by the vector (1;x0Wt)
0 are the same as N ! 1. This is the case when �W has full column rank.

Using partition regression formula, the cross sectionally augmented least squares (CALS) estimator

of hi � 1 dimensional vector �i in the auxiliary regression (48) is

b�i;CALS = �Z0iMHZi
��1

Z0iMHxi�, (53)

where xi� = (xi1; :::; xiT )
0, Zi =

�
�i1 (�1) ; �i2 (�1) ; :::; �ihi (�1)

�
, �ir (�1) =

�
�ir0; :::; �i;r;T�1

�0 for
r 2 f1; ::; hig ;MH = IT �H (H0H)+H0, H =

�
� ;XW ;XW (�1)

�
, � is T � 1 dimensional vector of

ones, XW = (xW1�; :::;xWmw�), XW (�1) = [xW1 (�1) ; :::;xWmw (�1)], xWs� = (xWs1; :::; xWsT )
0

and xWs (�1) = (xWs0; :::; xWs;T�1)
0 for s 2 f1; ::;mwg. De�ne for future reference vector vit =

S0i�t = �it � S0i�f t � S0i�, and the following matrices.

Q = [� ;F;F (�1)] , (54)

and

A
(2m+1)�(2mw+1)

=

0BBBB@
1 �0W �0W

0 �
0
W 0m�mw

0 0m�mw �
0
W

1CCCCA , (55)

where F =(f1�; :::; fm�), F (�1)= [f1 (�1) ; :::; fm (�1)], fr� = (fr1; :::; frT )0 and fr (�1) = (fr0; :::; fr;T�1)0

for r 2 f1; ::;mg.

For this more general case we replace Assumption 13 with the following (and suppress the

subscript N to simplify the notations)

ASSUMPTION 14 (Identi�cation of �i) There exists T0 and N0 such that for all T � T0;

N � N0 and for any i 2 f1; ::; Ng,
�
T�1Z0iMHZi

��1 exists, �W is full column rank matrix,


vi = E (vitv
0
it) =

P1
`=0 S

0
i�

`RR0�0`Si is positive de�nite and



�1vi 

 = O (1).
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Theorem 2 Let xt be generated by model (32), Assumptions 7-12, and 14 hold, and W is any

arbitrary (pre-determined) matrix of weights satisfying conditions (33)-(34). Then if in addition

N;T
j!1 such that T=N ! {, with 0 � { <1, the asymptotic distribution of b�i;CALS de�ned by

(53) is given by. p
T

�ii



1
2
vi

�b�i;CALS � �i� D! N (0; Ihi) , (56)

where �2ii = V ar (uit), 
vi = E (vitv
0
it) and vit = S

0
i�t =

P1
`=0 S

0
i�

`ut�`.

Remark 19 As before, we also have

p
T
�b�i;CALS � �i� D! N

�
0; �2ii;1


�1
vi;1

�
;

where 
vi;1 = limN!1
vi, and �2ii;1 = limN!1 �2ii.

Extension of the analysis to a IVAR(p) model is straightforward and it is relegated to a Sup-

plement available from the authors upon request.

5 Monte Carlo Experiments: Small Sample Properties of CALS

Estimator

5.1 Monte Carlo Design

In this section we report some evidence on the small sample properties of the CALS estimator in the

presence of unobserved common factors and weak error cross section dependence and compare the

results with standard least squares estimators. The focus of our analysis will be on the estimation

of the individual-speci�c parameters in an IVAR model that also allows for other interactions that

are of order O(N�1). The data generating process (DGP) is given by

xt � 
ft = � (xt�1 � 
ft�1) + ut, (57)

where ft is the only unobserved common factor considered (m = 1), and 
 = (
1; :::; 
N )
0 is the

N � 1 vector of factor loadings.

We consider two sets of factor loadings to distinguish the case of weak and strong cross section

dependence. Under the former we set 
 = 0; and under the latter we generate the factor loadings
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i; for i = 1; 2; :::; N , from a stationary spatial process in order to show that our estimators are

invariant to the cross section dependence of the factor loadings. The following bilateral Spatial

Autoregressive Model (SAR) is considered.


i � �
 =
a

2

�

i�1 + 
i+1

�
� a
�
 + �
i, (58)

where �
i � IIDN
�
0; �2�


�
. As established by Whittle (1954), the unilateral SAR(2) scheme


i =  
1
i�1 +  
2
i�2 + �
i, (59)

with  
1 = �2b
 ;  
2 = b2
 and b
 =
�
1�

q
1� a2


�
=a
 , generates the same autocorrelations as

the bilateral SAR(1) scheme (58). The factor loadings are generated using the unilateral scheme

(59) with 50 burn-in data points (i = �49; :::; 0) and the initializations 
�51 = 
�50 = 0. We set

a
 = 0:4, �
 = 1, and choose �2�
 such that V ar (
i) = 1.20 The common factors are generated

according to the AR(1) process

ft = �fft�1 + �ft, �ft � IIDN
�
0; 1� �2f

�
,

with �f = 0:9.

In line with the theoretical analysis the autoregressive parameters are decomposed as � = �a+

�b, where �a capture own and neighborhood e¤ects as in

�a =

0BBBBBBBBBBBBBB@

'1  1 0 0 0

 2 '2  2 0 0

0  3 '3  3 0

0 0  4 '4
. . .

. . . . . .  N�1

0 0 0  N 'N

1CCCCCCCCCCCCCCA
;

20The variance of factor loadings is given by

�2�
 =

�
1 +  
2

� ��
1�  2
2

�
�  2
1

��
1�  
2

� .
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and the remaining elements of �, de�ned by �b, are generated as

�bij =

8><>: �i!ij for j =2 fi� 1; i; i+ 1g

0 for j 2 fi� 1; i; i+ 1g
, where

�i � IIDU (�0:1; 0:2) and !ij =
& ijPN
j=1 & ij

, (60)

with & ij � IIDU (0; 1). This ensures that �bij = Op(N
�1), and limN!1E

�
�bij

�
= 0, for all i and

j.

With �a as speci�ed above, each unit i, except the �rst and the last, has two neighbors: the

�left�neighbor i� 1 and the �right�neighbor i+1. The DGP for the ith unit can now be written as

x1t = '1x1;t�1 +  1x2;t�1 + �
0
b1xt�1 + 
1ft � �01
ft�1 + u1t,

xit = 'ixi;t�1 +  i (xi�1;t�1 + xi+1;t�1) + �
0
bixt�1 + 
ift � �0i
ft�1 + uit; i 2 f2; ::; N � 1g ,

xNt = 'NxN;t�1 +  NxN�1;t�1 + �
0
b;Nxt�1 + 
Nft � �0N
ft�1 + uNt.

To ensure the DGP is stationary we generate 'i � IIDU (0:4; 0:6), and  i � IIDU (�0:1; 0:1)

for i 6= 2. We choose to focus on the equation for unit i = 2 in all experiments and we set '2 = 0:5

and  2 = 0:1. This yields k�kr � 0:9, and together with
���f �� < 1 it is ensured that the DGP is

stationary and the variance of xit is bounded in N . The cross section averages, xwt; are constructed

as simple averages, xt = N�1PN
j=1 xit.

The N -dimensional vector of error terms, ut; is generated using the following SAR model:

u1t = auu2t + "1t,

uit =
au
2
(ui�1;t + ui+1;t) + "it, i 2 f2; ::; N � 1g

uNt = auuN�1;t + "Nt,

for t = 1; 2; ::; T . We set au = 0:4 which ensures that the errors are cross sectionally weakly

dependent, and draw "it, the ith element of "t, as IIDN
�
0; �2"

�
. We set �2" = N=tr (RuR

0
u) so that
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on average V ar(uit) is 1, where Ru = (I� auS)�1 ; and the spatial weights matrix S is

S =

0BBBBBBBBBBBBBB@

0 1 0 0 0

1
2 0 1

2 0 0

0 1
2 0 1

2 0

. . . . . . . . .

1
2 0 1

2

0 0 0 1 0

1CCCCCCCCCCCCCCA
. (61)

In order to minimize the e¤ects of the initial values, the �rst 50 observations are dropped.

N 2 f25; 50; 75; 100; 200g and T 2 f25; 50; 75; 100; 200g. For each N , all parameters were set at the

beginning of the experiments and 2000 replications were carried out by generating new innovations

"it, �ft and �
i.

The focus of the experiments is to evaluate the small sample properties of the CALS estimator of

the own coe¢ cient '2 = 0:5 and the neighboring coe¢ cient  2 = 0:1. The cross-section augmented

regression for estimating coe¢ cients f�2;  2g in the case of the second cross section unit is given

by (similar results are also obtained for other cross section units)

x2t = c2 +  2 (x1;t�1 + x3;t�1) + '2x2;t�1 + �2;0xt + �2;1xt�1 + �2t. (62)

We also report results of the Least Squares (LS) estimator computed using the above regression

but without augmentation with cross-section averages. The corresponding CALS estimator and

non-augmented LS estimator are denoted by b'2;CALS and b'2;LS (own coe¢ cient), or b 2;CALS andb 2;LS (neighboring coe¢ cient), respectively.
To summarize, we carry out two di¤erent sets of experiments, one set without the unobserved

common factor (
 = 0), and the other with unobserved common factor (
 6= 0). There are

many sources of interdependence between individual units: spatial dependence of innovations fuitg,

spatiotemporal interactions due to coe¢ cient matrices �a and �b, and �nally in the latter case

with 
 6= 0 the cross section dependence also arises via the unobserved common factor ft and

cross-sectionally dependent factor loadings. Additional intermediate cases are also considered, the

results of which are available in a Supplement from the authors on request.21

21Supplement presents experiments with all combination of zero or nonzero coe¢ cient matrix �b, zero or nonzero
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5.2 Monte Carlo Results

Tables 1-2 give the bias (�100) and RMSE (�100) of CALS and LS estimators as well as size and

power of tests at the 5% nominal level. Results for the estimated own coe¢ cient, b'2;CALS andb'2;LS , are reported in Table 1. The top panel of this table presents the results for the experiments
with an unobserved common factor (
 6= 0). In this case, fxitg is CSD and the standard LS

estimator without augmentation with cross section averages is not consistent. The bias of b'2;LS is
indeed quite substantial for all values of N and T and the tests based on b'2;LS are grossly oversized.
CALS, on the other hand, performs well for T � 100 and all values of N . For smaller values of T ,

there is a negative bias, and the test based on b'2;CALS is slightly oversized. This is the familiar time
series bias where even in the absence of cross section dependence the LS estimator of autoregressive

coe¢ cients will be biased in small T samples.

Moving on to the experiments without a common factor (given at the bottom half of the table),

we observe that the LS estimator slightly outperforms the CALS estimator. In the absence of

common factors, fxitg is weakly cross sectionally dependent and therefore the augmentation with

cross section averages is (asymptotically) redundant. Note that the LS estimator is not e¢ cient

because the residuals are cross sectionally dependent. Augmentation by cross-section averages

helps to reduce part of this dependence. Nevertheless, the reported RMSE of b'2;CALS does not
outperform the RMSE of b'2;LS .

The estimation results for the neighboring coe¢ cient,  2; are presented in Table 2. These are

qualitatively similar to the ones reported in Table 1. Cross section augmentation is clearly needed

when common factors are present. But in the absence of such common e¤ects, the presence of weak

cross section dependence, whether through the dynamics or error processes, does not pose any

di¢ culty for the least squares estimates so long as N is su¢ ciently large. Finally, not surprisingly,

the estimates are subject to the small T bias irrespective of the size of N or the degree of cross

section dependence.

Figure 1 plots the power of the CALS estimator of the own coe¢ cient, b'2;CALS , (top chart)
and the neighboring coe¢ cient, b 2;CALS , (bottom chart) for N = 200 and two di¤erent values

of T 2 f100; 200g. These charts provide a graphical representation of the results reported in

Tables 1-2, and suggest signi�cant improvement in power as T increases for a number of di¤erent

factor loadings 
, and low or high cross section dependence of errors (au = 0:4 or au = 0:8).
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alternatives.

6 An Empirical Application: a spatiotemporal model of house

prices in the U.S.

In a recent study Holly, Pesaran and Yamagata (2008, HPY) consider the relation between real

house prices, pit; and real per capita personal disposable income yit (both in logs) in a panel of

49 US States over 29 years (1975-2003), where i = 1; 2; :::; 49 and t = 1; 2; :::; T . Controlling

for heterogeneity and cross section dependence, they show that pit and yit are cointegrated with

coe¢ cients (1;�1), and provide estimates of the following panel error correction model:

�pit = ci + !i(pi;t�1 � yi;t�1) + �1i�pi;t�1 + �2i�yit + �it. (63)

To take account of unobserved common factors HPY augmented (63) with cross section averages

and obtained common correlated e¤ects mean group and pooled estimates (denoted as CCEMG

and CCEP) of f!i; �1i; �2ig which we reproduce in the left panel of Table 3. HPY then showed that

the residuals from these regressions, �̂it, display a signi�cant degree of spatial dependence. Here

we exploit the theoretical results of the present paper and consider the possibility that dynamic

neighborhood e¤ects are partly responsible for the residual spatial dependence reported in HPY.

To this end we considered an extended version of (63) where the lagged spatial variable �psi;t�1 =PN
j=1 sij�pj;t�1 is also included amongst the regressors, with sij being the (i; j) element of a spatial

weight matrix, S, namely

�pit = ci + !i(pi;t�1 � yi;t�1) + �1i�pi;t�1 +  i�psi;t�1 + �2i�yit + �it. (64)

Here we consider a simple contiguity matrix sij = 1 when the states i and j share a border and

zero otherwise, with sii = 0. Possible strong cross section dependence is again controlled for by

augmentation of the extended regression equation with cross section averages. Estimation results

are reported in the right panel of Table 3. The dynamic spatial e¤ects are found to be highly

signi�cant, irrespective of the estimation method, increasing �R2 of the price equation by 6-9%.

The dynamics of past price changes are now distributed between own and neighborhood e¤ects
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giving rise to much richer dynamics and spill over e¤ects. It is also interesting that the inclusion

of the spatiotemporal variable �psi;t�1 in the model has had little impact on the estimates of the

coe¢ cient of the real income variable, �2i.

7 Concluding Remarks

This paper has proposed restrictions on the coe¢ cients of in�nite-dimensional VAR (IVAR) that

bind only in the limit as the number of cross section units (or variables in the VAR) tends to

in�nity to circumvent the curse of dimensionality. The proposed framework relates to the various

approaches considered in the literature. For example when modelling individual households or �rms,

aggregate variables, such as market returns or regional/national income, are treated as exogenous.

This is intuitive as the impact of a �rm or household on the aggregate economy is small, of the

order O
�
N�1�. This paper formalizes this idea in a spatio-dynamic context.

It was established that, under certain conditions on the order of magnitudes of the coe¢ cients

in a large dynamic system, and in the absence of common factors, equations for individual units

decouple as N !1 and can be estimated separately. In the presence of a dominant economic agent

or unobserved common factors, individual-speci�c VAR models can still be estimated separately

if conditioned upon observed and unobserved common factors. Unobserved common factors can

be approximated by cross sectional averages, following the idea originally introduced by Pesaran

(2006).

The paper shows that the GVAR approach can be motivated as an approximation to an IVAR

featuring all macroeconomic variables. This is true for stationary models as well as for systems

with integrated variables of order one. Asymptotic distribution of the cross sectionally augmented

least-squares (CALS) estimator of the parameters of the unit-speci�c models was established both

in the case where the number of unobserved common factors is known and in the case where it is

unknown but �xed. Small sample properties of the proposed CALS estimator were investigated

through Monte Carlo simulations, and an empirical application was provided as an illustration of

the proposed approach.

Topics for future research could include estimation and inference in the case of IVAR models

with dominant individual units, analysis of large dynamic networks with and without dominant

nodes, and a closer examination of the relationships between IVAR and dynamic factor models.
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Figure 1: Power Curves for the CALS t-tests of Own Coe¢ cient, '2 (the upper chart) and the Neighboring

Coe¢ cient,  2 (the lower chart), in the Case of Experiments with 
 6= 0.
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Table 3: Alternative Average Estimates of the Error Correction Models for House

Prices Across 49 U.S. States over the Period 1975-2003

Holly et al. (2008) regressions Regressions augmented with

without dynamic spatial e¤ects dynamic spatial e¤ects

�pit MG CCEMG CCEP MG CCEMG CCEP

pi;t�1 � yi;t�1 �0:105
(0:008)

�0:183
(0:016)

�0:171
(0:015)

�0:095
(0:009)

�0:154
(0:018)

�0:152
(0:018)

�pi;t�1 0:524
(0:030)

0:449
(0:038)

0:518
(0:065)

0:296
(0:060)

0:188
(0:049)

0:272
(0:082)

�yit 0:500
(0:040)

0:277
(0:059)

0:227
(0:063)

0:497
(0:040)

0:284
(0:059)

0:201
(0:088)

�psi;t�1 - - - 0:331
(0:066)

0:350
(0:085)

0:431
(0:105)

�R2 0:54 0:70 0:66 0:60 0:79 0:72

Average Cross Correlation

Coe¢ cients ( �̂ )
0:284 �0:005 �0:016 0:267 �0:012 �0:016

Notes: MG stands for Mean Group estimates. CCEMG and CCEP signify the Common Correlated E¤ects Mean Group and

Pooled estimates de�ned in Pesaran (2006). Standard errors are in parentheses. �̂ denotes the average pair-wise correlation of

the residuals from the cross-section augmented regressions across the 49 U.S. States.
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Appendix

A Lemmas and Proofs

Proof of Proposition 1. For any N 2 N, the variance of xt is


 =V ar (xt) =

1X
`=0

�`��0`, (65)

and, k
k is under Assumptions 1-2 bounded by

k
k � k�k
1X
`=0

k�k2` = O
�
N1��� . (66)

It follows that for any arbitrary nonrandom vector of weights satisfying granularity condition (11),



V ar �w0xt
�

 = 

w0
w



 � 

% (
) �w0w
�

 , (67)

where % (
) = k
k = O
�
N1���, and w0w = kwk2 = O

�
N�1� by condition (11). This implies kV ar (w0xt)k =

O
�
N��� and limN!1 kV ar (w0xt)k = 0.

Proof of Corollary 1. Assumption 3 implies that for i 2 K, vector �bi satis�es condition (11). It follows from

Proposition 1 that

lim
N!1

V ar
�
�0bixt

�
= 0 for i 2 K. (68)

System (2) implies

xit � �0axt�1 � uit = �
0
bxt�1; for any i 2 S and any N 2 N: (69)

Taking variance of (69) and using (68) now yields (19).

Proof of Proposition 2. Solving (2) backwards yields

xt =

1X
`=0

�
�`R

�
"t�`, (70)

where R =�r1e
0
1 + _R�1. Hence

x1t �
1X
`=0

�
e01�

`�r1
�
"1;t�` =

1X
`=0

�
e01�

` _R�1

�
"t�`. (71)

Under Assumptions 4-6,

V ar

 1X
`=0

�
e01�

` _R�1

�
"t�`

!
=

1X
`=0

e01�
` _R�1 _R

0
�1�

0`e1,

� e01 _R�1 _R
0
�1e1 +

1X
`=1

e01�
` _R�1 _R

0
�1�

0`e1. (72)
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But

lim
N!1




e01 _R�1 _R
0
�1e1




 = lim
N!1

kr�1k2 = 0 (73)

under Assumption 6. Set a0` � e01�` and let a`;�1 = (0; a`2; :::; a`N )
0. Note that under Assumptions 4-5:

ka`kc � �`, (74)

a`1 = O (1) , (75)

ka`;�1kr = O
�
N�1� , (76)

for ` = 0; 1; 2; :::. Result (74) follows from Assumption 5 by taking the maximum absolute row-sum matrix norm of

a0` = e
0
1�

`.22 Results (75)-(76) follow by induction directly from Assumptions 4-5. Using (74)-(76), we have





1X
`=1

e01�
` _R�1 _R

0
�1�

0`e1






 =







1X
`=1

a0` _R�1 _R
0
�1a`






 ,
�







1X
`=1

a2`1r
0
�1r�1






+






1X
`=1

a0`;�1 _R�1 _R
0
�1a`;�1






 ,
� kr�1k2

1X
`=1

�2` +



 _R�1




2 1X
`=1

ka`;�1kr ka`;�1kc (77)

where as before limN!1 kr�1k2 = 0 under Assumption 6,
P1

`=1 �
2` = O (1) by Assumption 5,




 _R�1




2 = O
�
N1���

by Assumption 6, and
P1

`=1 ka`;�1k
2 �

P1
`=1 ka`;�1kr ka`;�1kc = O

�
N�1� by properties (74)-(76). It follows that

limN!1




P1
`=1 e

0
1�

` _R�1 _R
0
�1�

0`e1




 = 0. Noting that E hP1
`=0

�
e01�

` _R�1

�
"t�`

i
= 0, we have

1X
`=0

�
e01�

` _R�1

�
"t�`

q:m:! 0, as N !1. (78)

This completes the proof of equation (25). To prove (26), we write

xwt �
1X
`=0

�
w0�`�r1

�
"1;t�` =

1X
`=0

�
w0�` _R�1

�
"t�`. (79)

Since the vectors
�
w0�`

	
have the same properties as vectors fa`g in equations (74)-(76), it follows that (using the

same arguments as above),
1X
`=0

�
w0�` _R�1

�
"t�`

q:m:! 0, as N !1. (80)

This completes the proof of equation (26).

Proof of Proposition 3.

xit � �iixi;t�1 � �
0
�1;�ixt�1 � �i1x1;t�1 � ri1"1t � rii"it = r

0
�1;�i"t (81)

The vector r�1;�i satis�es equation (24) of Assumption 6, V ar ("t) = IN , and E ("t) = 0, which implies

r0�1;�i"t
q:m:! 0: (82)

22ka`kc �


e01�`




r
� ke01kr k�k

`
r � �`.
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8 and 9 that &b;n has following properties
29

&b;0 = O (1) , and &b;n ! 0 as n!1. (95)

E

�h
E
�
�Nt
cNt

j Ft�n
�i2�

is therefore bounded by &n = &a;n + &b;n. Equations (94) and (95) establish

&0 = O (1) , &n ! 0 as n!1. (96)

By Liapunov�s inequality, E jE (�Nt j Ft�n)j �
q
E
�
[E (�Nt j Ft�n)]2

	
(Davidson, 1994, Theorem 9.23). It follows

that the two-dimensional array
�
f�Nt;Ftg1t=�1

	1
N=1

, is L1-mixingale with respect to a constant array fcNtg. Fur-

thermore, (96) establishes array f�Nt=cNtg is uniformly bounded in L2 norm. This implies uniform integrability.30

Since also equations (91) and (92) hold, array
�
f�Nt;Ftg1t=�1

	1
N=1

satis�es conditions of a mixingale weak law,31

which implies
PTN

t=1 �Nt
L1! 0, i.e.:

1

T

TX
t=1

�0�t�p'
0�t�q � E

�
�0�t�p'

0�t�q
� L1! 0,

as N;T
j! 1 at any rate. Convergence in L1 norm implies convergence in probability. This completes the proof of

result (86). Under the condition k�k = O
�
N� 1

2

�
, result (88) follows from result (86) by noting that




pN�


 = O (1).

Lemma 2 Let xt be generated by model (32), Assumptions 7-12 hold, and N;T
j! 1 at any rate. Then for

any p; q 2 f0; 1g, and for any sequences of non-random vectors � and ' with growing dimension N � 1 such that

k�kc = O (1) and k'kc = O (1), we have

1

T

TX
t=1

�0xt�p � E
�
�0xt�p

� p! 0, (97)

29Matrix B is symmetric by construction. Therefore kBk �
p
kBkr kBkc = kBkr, where

kBkr = max
n2f1;::;Ng

NX
s=1

k	nsk

= max
n2f1;::;Ng

NX
s=1

max
i2f1;::;Ng

NX
j=1

NX
`=0

jri`rj`rs`rn`j

� max
n2f1;::;Ng

NX
s=1

max
i2f1;::;Ng

NX
j=1

 
NX
`=0

jri`rj`j �
NX
`0=0

jrs`0rn`0 j
!

�
 

max
n2f1;::;Ng

NX
s=1

NX
`0=0

jrs`0rn`0 j
!
�
 

max
i2f1;::;Ng

NX
j=1

NX
`=0

jri`rj`j
!

�


RR0

2

r
� kRk2r kRk

2
c = O (1)

30Su¢ cient condition for uniform integrability is L1+" uniform boundedness for any " > 0.
31Davidson (1994, Theorem 19.11).
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and
1

T

TX
t=1

�0xt�p'
0xt�q � E

�
�0xt�p'

0xt�q
� p! 0. (98)

Furthermore, for k�k = O (1) and k'kc = O (1) we have

1

T

TX
t=1

�0�t�p'
0�f t�q

p! 0, (99)

where �t is de�ned in equation (40).

Proof. Let TN = T (N) be any non-decreasing integer-valued function of N such that limN!1 TN = 1. Consider

the following two-dimensional array
�
f�Nt;Ftg1t=�1

	1
N=1

, de�ned by

�Nt =
1

TN
�0�t�p'

0�f t�q,

where fFtg denotes an increasing sequence of �-�elds (Ft�1 � Ft) such that Ft includes all information available at

time t and �Nt is measurable with respect to Ft for any N 2 N. Let
�
fcNtg1t=�1

	1
N=1

be two-dimensional array

of constants and set cNt = 1
TN

for all t 2 Z and N 2 N. Using submultiplicative property of matrix norm, and

independence of ft and �t0 for any t; t
0 2 Z, we have

E

(�
E

�
�Nt
cNt

j Ft�n
��2)

� &n,

where

&n = sup
N2N

(
k�k2 k�k k�k2maxf0;n�pg

1X
`=0

k�k2` E
n�
E
�
'0�f t�q j Ft�n

��2o)
.

k�k2 = O (1), k�k < � by Assumption 8, and k�k �
p
k�kc k�kr = O (1) by Assumption 9. Furthermore, since

ft�q is covariance stationary and k'0��0'k = O (1) (by condition k'kc = O (1) and Assumption 12), we have

E
n�
E
�
'0�f t�q j Ft�n

��2o
= O (1) .

It follows that &n has following properties

&0 = O (1) and &n ! 0 as n!1.

Array f�Nt=cNtg is thus uniformly bounded in L2 norm. This proves uniform integrability of array f�Nt=cNtg.

Furthermore, using Liapunov�s inequality, two-dimensional array
�
f�Nt;FNtg1t=�1

	1
N=1

is L1-mixingale with respect

to constant array fcNtg. Noting that equations (91) and (92) hold, it follows that the array f�Nt;Ftg satis�es

conditions of a mixingale weak law,32 which implies
PTN

t=1 �Nt
L1! 0. Convergence in L1 norm implies convergence in

probability. This completes the proof of result (99).

Assumption 11 implies that sequence �0� (as well as '0�) is deterministic and bounded. Vector of endogenous

variables xt can be written as

xt = �+ �f t + �t.

32Davidson (1994, Theorem 19.11)
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Process ft is independent of �t. Suppose N;T
j!1 at any rate. Processes f�0�t�pg and f�0�t�p'0�t�qg are ergodic

in mean by Lemma 1 since k�k � k�kc = O (1). Furthermore,

1

T

TX
t=1

�0�f t � �0�E (ft)
p! 0,

and
1

T

TX
t=1

�0�f t'
0�f t�q � �0�E

�
ftf

0
t�q
�
�0'

p! 0,

since ft is covariance stationary m� 1 dimensional process with absolute summable autocovariances (ft is ergodic in

mean as well as in variance), and



�0��0'

 = O (1) ,


��0��0'�2


 = O (1) ,

by Assumption 12, conditionk�kc = O (1) and condition k'kc = O (1). Sum of bounded deterministic process and

independent processes ergodic in mean is a process that is ergodic in mean as well. This completes the proof.

Lemma 3 Let xt be generated by model (32), Assumptions 7-12 hold and N;T
j! 1 at any rate. Then for any

p; q 2 f0; 1g, for any sequence of non-random matrices of weights W of growing dimension N � mw satisfying

conditions (33)-(34), and for any r 2 f1; ::;mwg,

p
N

T

TX
t=1

W0�t�p
p! 0, (100)

p
N

T

TX
t=1

W0�t�pxW;t�q
p! 0, (101)

p
N

T

TX
t=1

W0�t�pxi;t�q
p! 0, (102)

p
N

T

TX
t=1

gitqit
p! 0, (103)

where the process �t is de�ned in equation (40), vector git =
�
1; �0i;t�1;x

0
Wt;x

0
W;t�1

�0
and qit is de�ned equation (47).

Proof. Let �wr for r 2 f1; ::;mwg denote the rth column vector of matrix W. Noting that



pN�wr




 = O (1) by

granularity condition (33), result p
N

T

TX
t=1

�w0
r�t�p

p! 0 (104)

follows directly from Lemma 1, equation (87). This completes the proof of result (100).

Let ' be any sequence of non-random N � 1 dimensional vectors of growing dimension such that k'kc = O (1).

We have p
N

T

TX
t=1

�w0
r�t�p'

0xt�q =

p
N

T

TX
t=1

�w0
r�t�p'

0 (�+ �f t�q + �t�q) . (105)
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Since



pN�wr




 = O (1) for any r 2 f1; ::;mwg by condition (33), we can use Lemma 1, result (88), which implies

p
N

T

TX
t=1

�w0
r�t�p'

0�t�q � E
�
�w0
r�t�p'

0�t�q
� p! 0. (106)

Sequence f'0�g is deterministic and bounded in N , and therefore it follows from Lemma 1, result (87), that

p
N

T

TX
t=1

�w0
r�t�p'

0�
p! 0. (107)

Similarly, Lemma 2 equation (99) implies

p
N

T

TX
t=1

�w0
r�t�p'

0�f t�q
p! 0. (108)

Results (106), (107) and (108) establish

p
N

T

TX
t=1

�w0
r�t�p'

0xt�q
p! 0. (109)

Result (101) follows from equation (109) by setting '= �wl for any l 2 f1; ::;mwg. Result (102) follows from equation

(109) by setting ' = ei where ei is N � 1 dimensional selection vector for the ith element.

Finally, the result (103) directly follows from results (100)-(102). This completes the proof.

Lemma 4 Let xt be generated by model (32), Assumptions 7-12 hold, and N;T
j! 1 at any rate. Then for any

sequence of non-random matrices of weights W of growing dimension N �mw satisfying conditions (33)-(34),

1

T

TX
t=1

gitg
0
it �Ci

p! 0, (110)

where matrix Ci = E (gitg
0
it) and vector git =

�
1; �0i;t�1;x

0
Wt;x

0
W;t�1

�0
.

Proof. Result (110) directly follows from Lemmas 1, 2 and 3.

Lemma 5 Let xt be generated by model (32), Assumptions 7-12 hold, and N;T
j! 1 at any rate. Then for any

sequence of non-random matrices of weights W of growing dimension N �mw satisfying conditions (33)-(34), and

for any �xed p � 0,
1

T

TX
t=1

W0�t�puit
p! 0, (111)

where the process �t is de�ned in equation (40). If in addition T=N ! {, with 0 � { <1,

1p
T

TX
t=1

W0�t�puit
p! 0. (112)

Proof. Let TN = T (N) be any non-decreasing integer-valued function of N such that limN!1 TN = 1 and

limN!1 TN=N = { <1, where { � 0 is not necessarily nonzero. De�ne

�Nit =
1p
TN

�
W0�t�puit � E

�
W0�t�puit

�	
, (113)
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where the subscript N is used to emphasize the number of cross section units.33 Let fFtg denote an increasing

sequence of �-�elds (Ft�1 � Ft) with �Nit measurable with respect of Ft. First it is established that for any �xed

i 2 N, the vector array
�
f�Nit=cNt;Ftg1t=�1

	1
N=i

is uniformly integrable, where cNt = 1p
NTN

. For p > 0, we can

write





E ��Nit�0Nitc2Nt

�



 = N �





E
" 1X

`=0

W0�`ut�`�puit

! 1X
`=0

W0�`ut�`�puit

!0#




 ,
= N






�2ii
1X
`=0

W0�`��0`W






 ,
� N�2ii kWk2 k�k

1X
`=0




�`



2 ,

= O (1) ,

where kWk2 = O
�
N�1� by condition (33), k�k = O (1) by Assumption 9, and

P1
`=0



�`


2 = O (1) by Assumption

8. For p = 0, we have





E ��Nit�0Nitc2Nt

�



 =






N � V ar
 
W0utuit +

1X
`=1

W0�`ut�`uit

!




 ,
� N

 
kWk2 k	iik+ �2

N ii kWk2 k�k
1X
`=1




�`



2 +O

�
N�1�! ,

= O (1) ,

where as before 	ii is N�N symmetric matrix with the element (n; s) equal to E (uituituntust). Therefore for p � 0,

the two-dimensional vector array f�Nit=cNtg is uniformly bounded in L2 norm. This proves uniform integrability of

f�Nit=cNtg.

E jE (�Nit j Ft�n)j =

8<: 0 for any n > 0 and any �xed p � 0

�mwcNtO (1) for n = 0 and any �xed p � 0
, (114)

and
�
f�Nit;FNtg1t=�1

	1
N=i

is L1-mixingale with respect to constant array fcNtg.34 Note that

lim
N!1

TNX
t=1

cNt = lim
N!1

TNX
t=1

1p
NTN

= lim
N!1

r
TN
N

=
p
{ <1,

and

lim
N!1

TNX
t=1

c2Nt = lim
N!1

TNX
t=1

1

TNN
= lim

N!1

1

N
= 0.

Therefore for each �xed i 2 N, each of the mw two-dimensional arrays given by the elements of vector array

33Note thatW and �t�p change with N , but as before we ommit subscript N here to keep the notation simple.
34The last equality in equation (114) takes advatage of Liapunov�s inequality. �mw is mw � 1 dimensional vector

of ones.
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�
f�Nit;Ftg1t=�1

	1
N=i

satis�es conditions of a mixingale weak law35 , which implies

1p
TN

TNX
t=1

W0�t�puit �
p
TNE

�
W0�t�puit

� L1! 0.

But 


pTNE �W0�t�puit
�



c
=
p
TN


E �W0utuit

�


c
=
p
TNO

�
1

N

�
! 0,

since limN!1 TN=N = { < 1. Convergence in L1 norm implies convergence in probability. This completes the

proof of result (112).

Result (111) is established in a very similar fashion. De�ne new vector array qNit = 1p
TN
�Nit where �Nit is array

de�ned in (113) and i 2 N is �xed. Let TN = T (N) be any non-decreasing integer-valued function of N such that such

that limN!1 TN = 1. Notice that for any �xed i 2 N, vector array
n�p

TNqNit=cNt;Ft
	1
t=�1

o1
N=i

is uniformly

integrable because
�
f�Nit=cNt;Ftg1t=�1

	1
N=i

is uniformly integrable. Furthermore,
�
fqNit;Ftg1t=�1

	1
N=i

is L1-

mixingale with respect to the constant array
�

1p
TN
cNt

�
since

�
f�Nit;Ftg1t=�1

	1
N=i

is L1 mixingale with respect

to the constant array fcNtg. Note that

lim
N!1

TNX
t=1

1p
TN

cNt = lim
N!1

TNX
t=1

1

TN
p
N
= lim

N!1

1p
N
= 0,

and

lim
N!1

TNX
t=1

�
1p
TN

cNt

�2
= lim

N!1

TNX
t=1

�
1

TN
p
N

�2
= lim

N!1

1

TNN
= 0.

Therefore for any �xed i 2 N, a mixingale weak law36 implies

TNX
t=1

qNit
L1! 0 as N !1. (115)

Since also

E
�
W0�t�puit

�
= O

�
N�1� ,

it follows
1

T

TX
t=1

W0�t�puit
L1! 0,

as N;T
j! 1 at any rate. Convergence in L1 norm implies convergence in probability. This completes the proof of

result (111).

Lemma 6 Let xt be generated by model (32), Assumptions 7-12 hold and N;T
j! 1 such that T=N ! {, with

0 � { <1. Then for any sequence of non-random matrices of weights W of growing dimension N �mw satisfying

conditions (33)-(34), we have,

35See Davidson (1994, Theorem 19.11).
36See Davidson (1994, Theorem 19.11).
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a) under Assumption 13,

1

�ii
C
� 1
2

i

1p
T

TX
t=1

egituit D! N (0; Iki) , (116)

where Ci = E (egiteg0it) and egit = �1; �0i;t�1; f 0t�0W ; f 0t�1�0W�0.
b) under Assumption 14,

1

�ii
p
T


� 1
2

vi

TX
t=1

vi;t�1uit
D! N (0; Ihi) , (117)

where matrix 
vi = E (vitv
0
it) and vector vit = S

0
i

P1
`=0�

`ut�`.

Proof. Let a be any ki � 1 dimensional vector such that kak = 1 and de�ne

�Nt =
1p
TN�ii

a0C
� 1
2

i egituit,
where TN = T (N) is any non-decreasing integer-valued function ofN such that limN!1 TN =1 and limN!1 TN=N =

{ < 1, where 0 � { < 1. Array f�Nt;Ftg is a stationary martingale di¤erence array.37 Lemmas 1 and 2 imply

a0C
� 1
2

i egit is ergodic in variance, in particular
1

TN

TNX
t=1

a0C
� 1
2

i egiteg0itC� 1
2

i a
p! 1.

egit and uit are independent and the fourth moments of uit are �nite. Therefore a0C� 1
2

i egituit is ergodic in variance
and

TNX
t=1

�2Nt
p! 1. (118)

Furthermore, E
�
��1ii a

0C
�1=2
i egituit�4 = O (1) and therefore

lim
N!1

TNX
t=1

E
�
�4Nt

�
= 0.

Using Liapunov�s theorem (Davidson, 1994, Theorem 23.11), Lindeberg condition38 holds, which in turn implies

max
1�t�TN

j�Ntj
p! 0 as N !1. (119)

Results (118), (119) and the martingale di¤erence array central limit theorem (Davidson, 1994, Theorem 24.3)

establish
TNX
t=1

�Nt =
1p
TN�ii

a0C
� 1
2

i

TNX
t=1

egituit D! N (0; Iki) (120)

Since equation (120) holds for any ki � 1 dimensional vector a such that kak = 1, result (116) directly follows from

equation (120) and Davidson (1994, Theorem 25.6).

Result (117) can be established in the same way as the result (116), but this time we set �Nt = 1p
TN�ii

a0

� 1
2

vi vi;t�1uit,

37As before, let fFtg denote an increasing sequence of �-�elds (Ft�1 � Ft) with �Nt measurable with respect of
Ft.
38See Davidson (1994, Condition 23.17).
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where a is any hi � 1 dimensional vector such that kak = 1.

Lemma 7 Let xt be generated by model (32), and suppose Assumptions 7-12 hold and N;T
j!1 at any rate. Then

for any arbitrary matrix of weights W satisfying conditions (33)-(34), and for any p; q 2 f0; 1g :

1

T

TX
t=1

�W;t�p = op

�
1p
N

�
, (121)

1

T

TX
t=1

�W;t�pf
0
t�q = op

�
1p
N

�
, (122)

1

T

TX
t=1

�i;t�p�
0
W;t�q = op

�
1p
N

�
, (123)

1

T

TX
t=1

�W;t�p�
0
W;t�q = op

�
1p
N

�
, (124)

�0
iQ

T
= op (1) . (125)

Furthermore,
H0Q

T
= A0Q

0Q

T
+ op

�
1p
N

�
, (126)

Z0iH

T
=
Z0iQ

T
A+ op

�
1p
N

�
, (127)

H0H

T
= A0Q

0Q

T
A+ op

�
1p
N

�
, (128)

H0ui�
T

= A0Q
0ui�
T

+ op

�
1p
N

�
, (129)

where

�i
T�hi

= (vi0;vi1; :::;vi;T�1)
0 , (130)

vit = S
0
i

P1
`=0�

`ut�`, matrices H and Zi are de�ned below equation (53), and matrices Q, F and A are de�ned in

equations (54)-(55).

Proof. Result (121) follows directly from equation (87) of Lemma 1 since the spectral norm of any column vector

of the matrix W is O
�
N� 1

2

�
. Result (122) follows from result (121) by noting that ft is independently distributed

of �W;t and all elements of the variance matrix of ft are �nite. Furthermore, since (by Lemma 1) 1
T

PT
t=1 vit

p! 0,

equation (125) follows. Results (123) and (124) follows directly from equation (88) of Lemma 1 by noting that

p
NE

�
�i;t�p�

0
W;t�q

�
= O

�
1p
N

�
(131)

as well as39

p
NE

�
�W;t�p�

0
W;t�q

�
= O

�
1p
N

�
. (132)

In order to prove equations (126)-(129), �rst note that the row t of the matrix H � QA is
�
0;�0Wt;�

0
W;t�1

�
.

39Results (131) and (132) are straightforward to establish by taking the row norm and by noting that the granularity
conditions (33)-(34) imply kWkr = O

�
N�1�.
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Using results (121)-(124), we have

(H�QA)0Q
T

=
1

T

TX
t=1

26664
0BBB@

0

�Wt

�W;t�1

1CCCA� 1, f 0t , f 0t�1

�37775 = op

�
1p
N

�
, (133)

Z0i (H�QA)
T

=
1

T

TX
t=1

266664�i;t�1
0BBB@

0

�Wt

�W;t�1

1CCCA
0377775 = op

�
1p
N

�
, (134)

H0 (H�QA)
T

=
1

T

TX
t=1

266664
0@ xWt

xW;t�1

1A
0BBB@

0

�Wt

�W;t�1

1CCCA
0377775 = op

�
1p
N

�
, (135)

(H�QA)0 (H�QA)
T

=
1

T

TX
t=1

266664
0BBB@

0

�Wt

�W;t�1

1CCCA
0BBB@

0

�Wt

�W;t�1

1CCCA
0377775 = op

�
1p
N

�
, (136)

Equations (133)-(134) establish results (126) and (127). Note that

H0H

T
=

H0 (H�QA)
T

+
H0 (QA)

T
,

=
H0 (H�QA)

T
+
(H�QA)0Q

T
A+A0Q

0Q

T
A,

= A0Q
0Q

T
A+op

�
1p
N

�
,

where the last equality uses equations (133) and (135). This completes the proof of result (128).

Equation (115) (see proof or Lemma 5) implies

1

T

TX
t=1

�W;t�puit � E (�W;t�puit)
p! 0,

as N;T
j! 1 at any rate. Result (129) follows by noting that

p
NE (�W;t�puit) = O

�
N� 1

2

�
. This completes the

proof.

Lemma 8 Let xt be generated by model (32), suppose Assumptions 7-12, 14 hold, and N;T
j!1 at any rate. Then

for any arbitrary matrix of weights W satisfying conditions (33)-(34) and Assumption 14, we have

Q0Q

T

p! 
Q , (137)


QQ is nonsingular, and
�0
i�i

T
�
vi

p! 0, (138)
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where


Q =

0BBB@
1 0 0

0 �f (0) �f (1)

0 �f (1) �f (0)

1CCCA ,
�f (`) = E (ftf

0
t�`), 
vi = E (viv

0
i), matrix Q is de�ned in equation (54), and matrix �i = (vi0;vi1; :::;vi;T�1)

0.

Proof. Assumption 11 implies matrix 
Q is nonsingular. Result (137) directly follows from the ergodicity properties

of the covariance stationary time-series process ft.

Consider now asymptotics N;T
j! 1 at any rate. Lemma 1 implies that hi � 1 dimensional vector vit = S0i�t

is ergodic in variance, in particular 1
T

PT
t=1 S

0
i�t�

0
tSi � E (S0i�t�

0
tSi)

p! 0.40 This completes the proof.

Lemma 9 Let xt be generated by model (32), suppose Assumptions 7-12 and 14 hold, and N;T
j! 1 at any rate.

Then for any arbitrary matrix of weights W satisfying conditions (33)-(34) and Assumption 14, we have

Z0iMHZi
T

=
Z0iMQZi

T
+ op

�
1p
N

�
, (139)

Z0iMQZi
T

�
vi
p! 0, (140)

Z0iMHQp
T

= op

 r
T

N

!
, (141)

Z0iMHui�p
T

=
�0
iMQui�p

T
+ op

 r
T

N

!
, (142)

where 
vi is de�ned in Assumption 14, MH = IT �H (H0H)
+
H0, matrices H and Zi are de�ned below equation

(53), matrices Q and F are de�ned in equation (54), and matrix �i = (vi0;vi1; :::;vi;T�1)
0.

Proof.
Z0iMHZi

T
=
Z0iZi
T

� Z0iH

T

�
H0H

T

�+
H0Zi
T

. (143)

Results (127)-(128) of Lemma 7 imply

Z0iH

T

�
H0H

T

�+
H0Zi
T

=
Z0iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0Zi
T

+ op
�

1p
N

�
. (144)

Using de�nition of the Moore-Penrose inverse, it follows

�
A0Q

0Q

T
A

��
A0Q

0Q

T
A

�+�
A0Q

0Q

T
A

�
=

�
A0Q

0Q

T
A

�
. (145)

Multiply equation (145) by
�
Q0Q
T

��1
(AA0)

�1
A from the left and byA0 (AA0)

�1
�
Q0Q
T

��1
from the right to obtain41

A

�
A0Q

0Q

T
A

�+
A0 =

�
Q0Q

T

��1
. (146)

40kSikc = O (1) by Assumption 7.
41Note that plimT!1

1
T
Q0Q is nonsingular by Lemma 8, equation (137). AA0 is nonsingular, since matrix A has

full row-rank by Assumption 14.
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Equations (146) and (144) imply

Z0iH

T

�
H0H

T

�+
H0Zi
T

=
Z0iQ

T

�
Q0Q

T

��1
Q0Zi
T

+ op
�

1p
N

�
. (147)

Result (139) follows from equations (147) and (143).

System (32) implies

Zi = ��
0
iSi + F (�1)�0iSi +�i. (148)

Since Q = [� ;F;F (�1)], it follows

Z0iMQZi
T

=
�0
iMQ�i

T
=
�0
i�i

T
+
�0
iQ

T

�
Q0Q

T

��1
Q0�i

T
. (149)

Using equations (125), (137) and (138), result (140) follows directly from (149).

Results (126)-(128) of Lemma 7 imply

Z0iH

T

�
H0H

T

�+
H0Q

T
=
Z0iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0Q

T
+ op

�
1p
N

�
. (150)

Substituting equation (146), it follows

Z0iH

T

�
H0H

T

�+
H0Q

T
=
Z0iQ

T

�
Q0Q

T

��1
Q0Q

T
+ op

�
1p
N

�
. (151)

Equation (151) implies

Z0iMHQp
T

=
Z0iMQQp

T
+ op

 r
T

N

!
= op

 r
T

N

!
.

This completes the proof of result (141).

Results (127)-(129) of Lemma 7 imply

Z0iH

T

�
H0H

T

�+
H0ui�
T

=
Z0iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0ui�
T

+ op
�

1p
N

�
.

Substituting equation (146), it follows

Z0iH

T

�
H0H

T

�+
H0Q

T
=
Z0iQ

T

�
Q0Q

T

��1
Q0ui�
T

+ op
�

1p
N

�
. (152)

Noting that MQ (��
0
iSi + F�

0
iSi) = 0 since Q = [� ;F;F (�1)], equations (152) and (148) imply

Z0iMHui�p
T

=
Z
0
iMQui�p

T
+ op

 r
T

N

!
,

=
�

0
iMQui�p

T
+ op

 r
T

N

!
.

This completes the proof.

Lemma 10 Let xt be generated by model (32), and suppose Assumptions 7-12 and 14 hold, and N;T
j! 1 at any
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rate. Then for any arbitrary matrix of weights W satisfying conditions (33)-(34) and Assumption 14, we have

Z0iMH�i (�1)
T

= op

�
1p
N

�
, (153)

Z0iMHui�p
T

=
�0
iui�p
T

+ op

 r
T

N

!
+ op (1) , (154)

where matrices MH ,and Zi are de�ned below equation (53), �i = (vi0;vi1; :::;vi;T�1) and vector �i (�1) =�
�i;0; :::; �i;T�1

�0
.

Proof.

Z0i�i (�1)
T

=
1

T

TX
t=1

"
xi;t�1

 
�0ib

1X
`=0

�`ut�`�1

!0#
,

H0�i (�1)
T

=
1

T

TX
t=1

240@ xWt

xW;t�1

1A �0ib 1X
`=0

�`ut�`�1

!035 .
k�ibkr = O

�
N�1� by Assumption 7, therefore result (153) directly follows from equations (134) and (135).

�0
iMQui�p

T
=

�0
iui�p
T

+
�0
iQ

T

�
Q0Q

T

��1
Q0ui�p

T
,

=
�0
iui�p
T

+ op (1) , (155)

where Q0ui�p
T

= Op (1), plimT!1
1
T
Q0Q is nonsingular by Lemma 8, and �0

iQ

T
= op (1) by Lemma 7, equation (125).

Substituting (155) into equation (142) implies result (154). This completes the proof.

Proof of Theorem 1.

a) Substituting for xit in equation (49) yields

b�i � �i =  1
T

TX
t=1

gitg
0
it

!�1 
1

T

TX
t=1

gitqit +
1

T

TX
t=1

gituit

!
. (156)

With N;T
j!1 in any order, Lemma 5 yields42

1

T

TX
t=1

gituit
p! 0. (157)

Also using Lemmas 3 and 4 we have

1

T

TX
t=1

gitqit
p! 0, (158)

and
1

T

TX
t=1

gitg
0
it �CiN

p! 0, (159)

42 1
T

PT
t=1 xj;t�1uit

p! 0 since xjt is ergodic in mean by Lemma 2 and uit is independent of xj;t�1 for any j 2
f1; ::; Ng and any N 2 N. Furthermore, using similar arguments, 1

T

PT
t=1 ftuit

p! 0.
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respectively. Assumption 13 postulates that the matrix CiN is invertible for any N � N0 and


C�1

iN



 is
bounded in N . It follows from equation (159) that

 
1

T

TX
t=1

gitg
0
it

!�1
�C�1

iN

p! 0. (160)

Result b�i � �i p! 0 directly follows from equations (157), (158) and (160).

b) Multiplying equation (156) by
p
T yields

p
T (b�i � �i) =  1

T

TX
t=1

gitg
0
it

!�1 
1p
T

TX
t=1

gitqit +
1p
T

TX
t=1

gituit

!
. (161)

With N;T
j!1 such that T=N ! { <1, Lemma 3 can be used to show that

1p
T

TX
t=1

gitqit
p! 0. (162)

Since


C�1

iN



 = O (1), equations (160) and (162) now yield

 
1

T

TX
t=1

gitg
0
it

!�1
1p
T

TX
t=1

gitqit
p! 0. (163)

Lemma 5 establishes
1p
T

TX
t=1

�W;t�puit
p! 0 for p 2 f0; 1g . (164)

It follows from equation (164) that

1p
T

TX
t=1

(git � egit)uit p! 0, (165)

where egit = �1; �0i;t�1; f 0t�0W ; f 0t�1�0W�0. Lemma 6 establishes that
1

�ii;N
C
� 1
2

iN

1p
T

TX
t=1

egituit D! N (0; Iki) , (166)

Equations (160), (163), (165) and (166) imply result (50).

c) Lemma 4 establishes 1
T

PT
t=1 gitg

0
it � CiN

p! 0. The estimated residuals from auxiliary regression (48) are

equal to buit = uit � g0it (b�i � �i), which implies
1

T

TX
t=1

bu2it = 1

T

TX
t=1

u2it � 2 (b�i � �i)0 1
T

TX
t=1

gituit + (b�i � �i)0 1
T

TX
t=1

gitg
0
it

!
(b�i � �i) , (167)

where 1
T

PT
t=1 u

2
it � �2ii;N

p! 0, b�i � �i p! 0 is established in part (a) of this proof, 1
T

PT
t=1 gitg

0
it �CiN

p! 0

is established in Lemma 4, and 1
T

PT
t=1 gituit

p! 0 is established in equation (157). This completes the proof.
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Proof of Theorem 2. Vector xi� can be written, using system (32), as

xi� = �
�
�i � �0iS0i�

�
+ Zi�i + F
i � F (�1)�

0Si�i + �i (�1) + ui�, (168)

where �i (�1) =
�
�i0; :::; �i;T�1

�0
. Substituting equation (168) into the partition least squares formula (53) and noting

that by Lemma 9,
Z0iMHQp

T
= op

 r
T

N

!
, (169)

it follows
p
T
�b�i � �i� = �Z0iMHZi

T

��1 "
Z0iMH (ui� + �i (�1))p

T
+ op

 r
T

N

!#
. (170)

Lemma 9 also establishes that

Z0iMHZi
T

�
vi
p! 0, as N;T

j!1 at any rate, (171)

where 
vi = E (vitv
0
it) is nonsingular by Assumption 14.

Consider now asymptotics N;T
j!1 such that T=N ! { <1. Lemma 10 establishes

Z0iMH�i (�1)p
T

p! 0, (172)

and
Z0iMHui�p

T
=
�0
iui�p
T

+ op

 r
T

N

!
+ op (1) , (173)

where �i = (vi0; :::;vi;T�1)
0. Also from Lemma 6

1

�ii
p
T


� 1
2

vi

TX
t=1

vi;t�1uit
D! N (0; Ihi) . (174)

The desired result (56) now follows from (170)-(174).
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