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Abstract

This paper introduces a novel approach for dealing with the ‘curse of dimensionality’ in the
case of large linear dynamic systems. Restrictions on the coefficients of an unrestricted VAR
are proposed that are binding only in a limit as the number of endogenous variables tends to
infinity. It is shown that under such restrictions, an infinite-dimensional VAR (or IVAR) can
be arbitrarily well characterized by a large number of finite-dimensional models in the spirit
of the global VAR model proposed in Pesaran et al. (JBES, 2004). The paper also considers
IVAR models with dominant individual units and shows that this will lead to a dynamic factor
model with the dominant unit acting as the factor. The problems of estimation and inference in
a stationary IVAR with unknown number of unobserved common factors are also investigated.
A cross section augmented least squares estimator is proposed and its asymptotic distribution
is derived. Satisfactory small sample properties are documented by Monte Carlo experiments.
Keywords: Large N and T Panels, Weak and Strong Cross Section Dependence, VAR, Global
VAR, Factor Models
JEL Classification: C10, C33, C51
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Non-technical summary

Vector autoregressive models (VARs) provide a flexible framework for the analysis of complex
dynamics and interactions that exist between variables in the national and global economy. How-
ever, the application of the approach in practice is often limited to a handful of variables which
could lead to misleading inference if important variables are omitted merely to accommodate the
VAR modelling strategy. Number of parameters to be estimated grows at the quadratic rate with
the number of variables, which is limited by the size of typical data sets to no more than 5 to 7.
In many empirical applications, this is not satisfactory.

The objective of this paper is to analyze large linear dynamic systems of endogenously deter-
mined variables. In particular, we study VAR models where both the number of variables ()
and the number of time periods (T") tend to infinity. In this case, parameters of the VAR model
can no longer be consistently estimated unless suitable restrictions are imposed to overcome the
dimensionality problem. Two different approaches have been suggested in the literature to deal
with this ‘curse of dimensionality’: (7) shrinkage of the parameter space and (i7) shrinkage of the
data. This paper proposes a novel way to deal with the curse of dimensionality by shrinking part
of the parameter space in the limit as the number of endogenous variables (N) tends to infinity.

An important example would be a VAR model where each unit is related to a small number
of neighbors and a large number of non-neighbors. The neighborhood effects are fixed and do
not change with IV, but the coefficients corresponding to the remaining units are small, of order
0] (N *1). Another model of interest arises when in addition to the neighborhood effects, there is
also a fixed number of dominant units that have non-negligible effects on all other units. In the case
where the VAR contains neighborhood effects our specification would converge to a spatiotemporal
as N — oo. Finally, when the VAR includes dominant units the limiting outcome will be a dynamic
factor models. Such VAR models of growing dimension (N — oo) are referred in the paper as the
infinite-dimensional VARs, or IVARs.

The analysis of the paper also formally establishes the conditions under which the Global VAR
(GVAR) approach proposed by Pesaran, Schuermann and Weiner (JBES, 2004) is applicable. In
particular, the IVAR featuring all macroeconomic variables could be arbitrarily well approximated

by a set of finite-dimensional small-scale models that can be consistently estimated separately in
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the spirit of the GVAR.

Besides the development of an econometric approach for the analysis of groups that belong
to a large interrelated system, the second main contribution of the paper is in considering the
problems of the estimation and inference in stationary IVAR models with known as well as an
unknown number of unobserved common factors. A simple cross sectional augmented least-squares
estimator is proposed and its asymptotic distribution derived. Satisfactory small sample properties
are documented by Monte Carlo experiments. As an illustration of the proposed approach we follow
the recent empirical analysis of real house prices across the 49 U.S. States by Holly, Pesaran and
Yamagata (2008) and show statistically significant dynamic spill over effects of real house prices

across the neighboring states.
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1 Introduction

Vector autoregressive models (VARs) provide a flexible framework for the analysis of complex
dynamics and interactions that exist between economic variables. The traditional VAR modelling
strategy postulates that the number of variables, denoted as N, is fixed and the time dimension,
denoted as T, tends to infinity. The number of parameters to be estimated grows at the quadratic
rate with N and consequently the application of the approach in practice is often limited (by the
size of typical datasets) to a handful of variables.

The objective of this paper is to analyze VAR models where both N and T tend to infinity. In
this case, parameters of the VAR model can no longer be consistently estimated unless suitable
restrictions are imposed to overcome the dimensionality problem. Two different approaches have
been suggested in the literature to deal with this ‘curse of dimensionality’: (i) shrinkage of the
parameter space and (i7) shrinkage of the data. Spatial and/or spatiotemporal literature shrinks
the parameter space by using the concept of spatial weights matrix, which links individual units
with the rest of the system. Alternatively, one could use techniques whereby prior distributions are
imposed on the parameters to be estimated. Bayesian VAR (BVAR) proposed by Doan, Litterman
and Sims (1984), for example, use what has become known as ‘Minnesota’ priors to shrink the
parameters space. In most applications, BVARs have been applied to relatively small systems?
(e.g. Leeper, Sims, and Zha, 1996, considered 13- and 18-variable BVAR), with the focus mainly
on forecasting.?

The second approach to mitigating the curse of dimensionality is to shrink the data, along the
lines of index models. Geweke (1977) and Sargent and Sims (1977) introduced dynamic factor
models, which have more recently been generalized to allow for weak cross sectional dependence
by Forni and Lippi (2001) and Forni et al. (2000, 2004). Empirical evidence suggests that few
dynamic factors are needed to explain the co-movement of macroeconomic variables: Stock and
Watson (1999, 2002), Giannoni, Reichlin and Sala (2005) conclude that only few, perhaps two,
factors explain much of the predictable variations, while Bai and Ng (2007) estimate four factors

and Stock and Watson (2005) estimate as much as seven factors. This has led to the development

'Other types of priors have also been considered in the literature. See, for example, Del Negro and Schorfheide
(2004) for a recent reference.

2 A few exceptions include Giacomini and White (2006) and De Mol, Giannone and Reichlin (2006).

3Bayesian VARs are known to produce better forecasts than unrestricted VARs and, in many situations, ARIMA
or structural models. See Litterman (1986) and Canova (1995) for further references.
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of factor-augmented VAR (FAVAR) models by Bernanke, Boivin, and Eliasz (2005) and Stock and
Watson (2005), among others.

This paper proposes a novel way to deal with the curse of dimensionality by shrinking part of
the parameter space in the limit as the number of endogenous variables (N) tends to infinity. An
important example would be a VAR model where each unit is related to a small number of neighbors
and a large number of non-neighbors. The neighborhood effects are fixed and do not change with
N, but the coefficients corresponding to the remaining units are small, of order O (N *1). Another
model of interest arises when in addition to the neighborhood effects, there is also a fixed number
of dominant units that have non-negligible effects on all other units. This set-up naturally arises
in the context of global macroeconomic modelling. When all economies are small and open, using
a multicountry DSGE model Chudik (2008) shows that the coefficients of the foreign variables in
the rational expectations solution are all of order O (N _1). In the case where the VAR contains
neighborhood effects our specification would converge to a spatiotemporal as N — oco. Finally,
when the VAR includes dominant units the limiting outcome will be a dynamic factor models.
Such VAR models will be referred as the infinite-dimensional VARs, or IVARs.

The analysis of the paper also provides a link between data and parameter shrinkage approaches
to mitigating the curse of dimensionality. By imposing limiting restrictions on some of the para-
meters of the VAR we effectively end up with a data shrinkage. We apply the concept of strong
and weak Cross Section (CS) dependence (introduced by Pesaran and Tosetti, 2007) in the context
of IVARs and show that only strong CS dependence can be ‘transmitted’ through O (N _1) coeffi-
cients. This finding links our analysis to the factor models by showing that dominant unit becomes
(in the limit) a dynamic common factor for the remaining units in a large system of endogenously
determined variables. Static factor models are also obtained as a special case of IVAR. Last but
not least, this paper formally establishes the conditions under which the Global VAR (GVAR)
approach proposed by Pesaran, Schuermann and Weiner (2004) is applicable.* In particular, the
IVAR featuring all macroeconomic variables could be arbitrarily well approximated by a set of

finite-dimensional small-scale models that can be consistently estimated separately in the spirit of

*GVAR model has been used to analyse credit risk in Pesaran, Schuermann, Treutler and Weiner (2006) and
Pesaran, Schuerman and Treutler (2007). Extended and updated version of the GVAR by Dees, di Mauro, Pesaran
and Smith (2007), which treats Euro area as a single economic area, was used by Pesaran, Smith and Smith (2007)
to evaluate UK entry into the Euro. Global dominance of the US economy in a GVAR model is explicitly considered
in Chudik (2007). Further developments of a global modelling approach are provided in Pesaran and Smith (2006).
Garratt, Lee, Pesaran and Shin (2006) provide a textbook treatment of GVAR.
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the GVAR.

Besides the development of an econometric approach for the analysis of groups that belong to a
large interrelated system, the second main contribution of the paper is in considering the problems of
the estimation and inference in stationary IVAR models with known as well as an unknown number
of unobserved common factors. Our set-up extends the analysis of Pesaran (2006) to dynamic
models where all variables are determined endogenously. A simple cross sectional augmented least-
squares estimator (or CALS for short) is proposed and its asymptotic distribution derived. Small
sample properties of the proposed estimator are investigated through Monte Carlo experiments. As
an illustration of the proposed approach we follow the recent empirical analysis of real house prices
across the 49 U.S. States by Holly, Pesaran and Yamagata (2008) and show statistically significant
dynamic spillover effects of real house prices across the neighboring states.

The remainder of this paper is organized as follows. Section 2 outlines IVAR model, introduces
limiting restrictions, and provides few examples, which link IVAR with the literature. Section 3
investigates cross section dependence in IVAR models where key asymptotic results are provided.
Section 4 focusses on estimation of a stationary IVAR. Section 5 presents Monte Carlo evidence
and a spatiotemporal model of the US house prices is presented in Section 6. The final section
offers some concluding remarks. Proofs are provided in the Appendix.

A brief word on notation: |[A1(A)] > ... > [\, (A)| are the eigenvalues of A € M"*"  where
M"*™ is the space of real-valued n x n matrices. ||A||. = max Y ", |ai;| denotes the maximum

1<j<n

absolute column sum matrix norm of A, [[A|, = Jmax > i1 laij| is the absolute row-sum matrix
norm of A5 ||A| = /o (A’A) is the spectral nornr: ;f A o(A) = lrgia?(nﬂ)\i (A)|} is the spectral
radius of A.5 Row i of A is denoted by a/ and the column i is denoted_a; 4;. All vectors are column
vectors. Row i of A with the i" element replaced by 0 is denoted as a’ ;. Rowiof A € M™" with
the element ¢ and the element 1 replaced by 0 is alf1,7@' = (0,a42,...,@ii—1,0,a 441, ..., a;;n). The
matrix constructed from A by replacing its first column with a column vector of zeros is denoted
by A_;. Joint asymptotics in N, T — oo are represented by N, T ENINS an, = O(by,) states the

deterministic sequence a,, is at most of order b,. x, = O, (yn) states random variable x,, is at most

of order y,, in probability. N is the set of natural numbers, and Z is the set of integers. We use K

’The maximum absolute column sum matrix norm and the maximum absolute row sum matrix norm are sometimes
denoted in the literature as [|-||; and ||-|| , respectively.
5Note that if x is a vector, then ||x|| = 1/0 (x'x) = v/x'x corresponds to the Euclidean length of vector x.
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and € to denote large and small positive constants that do not vary with 4,¢, N or T'. Convergence
in distribution and convergence in probability is denoted by < and £>, respectively. Symbol s

represents convergence in quadratic mean.

2 Infinite-Dimensional Vector Autoregressive Models

Suppose there are N cross section units indexed by i € S = {1,.., N} C N. Depending on empirical
application, units could be households, firms, regions, countries, or macroeconomic indicators in a
given economy. Let x;; denote the realization of a random variable belonging to the cross section
unit ¢ in period ¢, and assume that x; = (x4, ...,th)/ is generated according to the following

stationary structural VAR model
Aoxy = Aixi—1 + Agey, (1)

where one lag is assumed for the simplicity of exposition, Ag, A; and As are N x N matrices of
unknown coefficients, and innovations collected into N x 1 vector €; = (g1, ...,en¢) are 11D (0,Iy).
The model (1), for example, arises as the rational expectations solution of a multi-country DSGE
model. (See, for example, Pesaran and Smith, 2006). Assuming matrix Ay is invertible, the reduced
form of structural model (1) is:

x; = ®x; 1 +uy, (2)

where the vector reduced-form errors u; is given by the following ‘spatial’ model
u; = R€t7 (3)

P =A, A, and R = Ay LA,. Focus of this paper is on a sequence of reduced-form models (2) of
growing dimension (N — 00), where the elements of ® and R (and hence the variance matrix of u;)
depend on N. But to simplify the notations we do not show this dependence explicitly, although it
will be understood throughout that all the parameters and the dimension of the random variables x;
and u; vary with IV, unless otherwise stated. The sequence of models (2) and (3) with dim(x;) = N
growing will be referred to as the infinite-dimensional VAR(1) model.

To allow for neighborhood effects it is convenient to decompose ® into two components: a
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sparse N x N matrix matrix, ®,, with fixed elements (that do not vary with N) which captures
the neighborhood effects, and a complement matrix, ®;, characterizing the remaining interactions,

so that ® = ®, + ®;. An example of ®, is given by

11 ¢12 0 0 0
b1 a2 P23 O 0
®, 0 39 P33 P34 0 | )
0 0 g3 oy
ON_1N
o 0 0 ON_iIN  ONN

where the nonzero elements are fixed coefficients that do not change with N. This represents
an ‘approximate line’ model where each unit, except the first and the last unit has one left and
one right neighbor. In contrast the individual elements of ®; are of order O(N~!), in particular
‘¢bij| < % for any i,5 € {1,.., N} and any N € N. Equation for unit ¢ € {2,..,N — 1} can be
written as

Tit = Qi 1Ti14-1 + Pyit—1 + B i 1Tiv 1,01 + PpiXe—1 + Ui (5)

Next section shows that under weak CS dependence of errors {u;}, @) xi—1 - 0, and Section 4
considers problem of estimation of the individual-specific parameters {¢; ; 1, @y, ®;i 11} We refer
to this model as a two-neighbor IVAR model which we use later for illustrative purposes as well as
in the Monte Carlo experiments.

The above decomposition of matrix ® is a pivotal example of limiting restrictions developed in
this paper. More generally, we have

®=DS+d,, (6)

where as before, the individual elements of matrix ®;, are (uniformly) of order O (N~!),
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d; is an h; x 1 dimensional vector containing the unknown coefficients to be estimated for unit
i € {1,.., N}, h; is bounded in N, h = Zfil h;, and S is a known h x N matrix partitioned as
S = (S1, S, ..., Sy)’, with S; being the N x h; selection matrix, which defines the neighbors for unit
1 as in the example above. S could also be related to a spatial weights matrix as in the following

example.

Example 1 Consider the following spatiotemporal model

Xt = szxxtfl + Uy, (8)

w = p,Suu + &g, 9)

where Sy and Sy, are N x N spatial weights matrices. Spatiotemporal model (8)-(9) is a special case

of the model (2)-(3) by setting
R=(1-p,S.,) ", 86 =p, forie{l,.,N},S=S,, and ®, = 0.

Remark 1 Note, however, that not all types of structural models (1) have reduced forms that satisfy

the restrictions given by (6). For example, consider the spatiotemporal model:
Xt = pSxX; + X1 + €4. (10)

Assuming matriz (I — p,Sx) is invertible, the reduced form of spatiotemporal model (10) is model
(2) with ® = ¢(I1—p,S,)" " and R = (I—p,S,)"'. For the known spatial weights matriz S,
and unknown parameters p, and ¢, the reduced form coefficient matriz ® cannot be decomposed as
in equation (6), where the matriz S is assumed to be known, {8;} and ®, are unknown, and the

elements of ®p are uniformly O (N_l),

3 Cross Sectional Dependence in Stationary IVAR Models

Here we investigate the correlation pattern of {z;;}, over time, ¢, and across the cross section units,
1. Unlike the time index t which is defined over an ordered integer set, the cross section index, i,
refers to an individual unit of an unordered population distributed over space or more generally over

networks. To avoid having to order the cross section units we make use of the concepts of weak
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and strong cross section dependence recently developed in Pesaran and Tosetti (2007, hereafter
PT). A process {z;:} is said to be cross sectionally weakly dependent (CWD) with respect to a
pre-determined information set, Z; 1, if for all weight vectors, w; = (w1, ..., wny)', satisfying the

‘granularity’ conditions’

Iwill = o (N7%), (11)
Wit _1 .

= O(N2) forany j < N, 12
Tl (37%) for sy 5 < (12)

we have

A}im Var (wé_lxt | Itfl) =0,forallte 7.

Since we will be dealing with stationary processes in what follows we confine our analysis to time
invariant weight vectors, w, and information sets, Z = ). Accordingly, we adopt the following

concept.

Definition 1 Stationary process {xy,i € S,t € T,N € N}, generated by the IVAR model (2), is
said to be cross sectionally weakly dependent (CWD), if for any sequence of non-random vectors of
weights w satisfying the granularity conditions (11)-(12),

lim Var (Ty: | Z) = lim Var (Ty) =0, (13)

N—o0 N—oo
where Ty = W'xy. {xi} is said to be cross sectionally strongly dependent (CSD) if there exists a
sequence of weights vectors w satisfying (11)-(12) and a constant K such that

lim Var (Zy:) > K > 0. (14)

N—oo

Necessary condition for covariance stationarity for fixed /N is that all eigenvalues of ® lie inside
of the unit circle. For a fixed N, and assuming that max; |\; ()| < 1, the Euclidean norm of
&’ defined by [Tr (<I’£<I’€')}1/2 — 0 exponentially in ¢, and the process x; = > 72, ®u;_ will

be absolute summable, in the sense that the sum of absolute values of the elements of ®¢, for

"Condition (12) is understood as

i K
Wit o ——, for any j € {1,.., N} and any N € N,

lwell = VN

where constant K < oo does not depend on NN nor on j.
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¢=0,1,... converge. Observe that as N — oo, Var (z;) need not necessarily be bounded in N if

max; |A; ()] < 1 —e. For example, consider the IVAR(1) model with

¢ 0 0 0
v ¢ 0 0
= 0 ¢ o 0 1|
0
0 0 (U

and assume that var (u;) is uniformly bounded away from zero as N — oo. It is clear all eigenvalues
of ® are inside the unit circle if and only if |¢| < 1, regardless the value of the neighboring coefficient
1. Yet the variance of zy; increases in N without bounds at an exponential rate for || > 1 — |p|.®
Therefore, a stronger condition than stationarity is required to rule out variances of z;; exploding

as N — oo. This is set out in the following assumptions.

ASSUMPTION 1 Individual elements of double index process of errors {ui,i € S,t € T} are
random variables defined on the probability space (Q, F, P). w; is independently distributed of uy,

for anyt £t € T. For each t € T, u; has mean and variance,
E(w) =0, E(wu) =3,

where 3 is an N x N symmetric, nonnegative definite matriz, such that 0 < 0% < K < oo for any

i €8 and 0% = Var (uy) is the i-th diagonal element of covariance matriz 2.

ASSUMPTION 2 (Coefficients matric ® and CWD u;)
@] <1—¢ (15)

=] =0 (N"7), (16)

where € > 0 is an arbitrarily small positive constant.

81t can be shown that

N o)
Var{zni} = 2N > o™,
=1 =0

k-2
where oy = ﬁ [T ¢+k—1—3) for k>1and age =1.
j=0
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Remark 2 Assumption 1 and equation (16) of Assumption 2 imply {u;} is CWD.

Remark 3 Condition (15) of Assumption 2 is a sufficient condition for covariance stationarity
and also delivers bounded variance of x;, as N — o0o. Note that Assumption 2 also rules out
cases where strong cross sectional dependence arises due to a particular unit (or units) since both

|®], < VN |®| =0 (\/]V) and ||X||. cannot diverge to infinity at the rate N.

Proposition 1 Consider model (2) and suppose that Assumptions 1 and 2 hold. Then for any

arbitrary sequence of fived weights w satisfying condition (11), and for anyt € T,

lim Var (Ty:) = 0. (17)

N—oo

Proposition 1 has several interesting implications. Suppose that unit ¢ has a fixed number
of neighbors, j = 1,2,..,p, for which coefficients ¢;; = O (1), while the influence of each of the
remaining units on the unit ¢ through coefficient matrix ® is small. In particular, consider the
following decomposition of the " row of matrix ®, denoted as @,, into a possibly sparse vector

¢.,; and the remaining coefficients collected into vector ¢y;:

ASSUMPTION 3 Let K C S be a non-empty index set. For any i € K, ¢; = ¢, + dp;, where

1/2

N
lowll = [ Sk =0 (n73). (18)
j=1

Remark 4 Obvious examples of the decomposition of ¢; is when ¢, = (0,...,0,¢;,0,...,0), and
Dpi = (Digy-ens Bii—1,0,P; 115+ Pin), where ¢;; does not depend on N, and the left-right neigbour-

hood model where ¢q; = (0, ...,0,¢; ; 1, Diis G; 5115 0.-,0) and @y = (di1, - B-2,0,0,0,; 41 9., Pin)

with ¢; ;_1,¢; and ¢; ;1 being fized parameters that do not vary with N.

Remark 5 As we shall see in Section 4, for estimation and inference the following slightly stronger

condition on the row norm of ¢p; will be needed.
1ill, = O (N71).

Remark 6 Assumption 3 implies that for i € K, Zjvzl brij < ll@pill. = O(1). Therefore, it is

possible for the dependence of each individual unit on the rest of the units in the system to be large
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even if ¢, = 0. However, as we shall see below, in the case where {x;} is a CWD process, vector

- does not play a role in the model for the it" cross section unit as N — oo.
bi Y

Corollary 1 Consider model (2) and suppose Assumptions 1-3 hold. Then,

lim Var (:L‘it — Plixi—1 — ul-t) =0, forie K. (19)

N—oo

Observe that if ¢,; is the only nonzero element of ¢,;, then the regression model for unit ¢

completely de-couples from the rest of the system as N — oo, in the sense that
lim Var (i — ¢;2it—1 — uie) = 0.
N—oo

The above corollary in effect states that in econometric modelling of x;; one can ignore the
effects of those cross section units that have zero entries in ¢,; as N becomes large, so long as x;

is a CWD process.’

3.1 Contemporaneous Dependence: Spatial or Network Dependence

An important form of cross section dependence is contemporaneous dependence across space. The
spatial dependence, pioneered by Whittle (1954), models cross section correlations by means of
spatial processes that relate each cross section unit to its neighbor(s). Spatial autoregressive and
spatial error component models are examples of such processes. (Cliff and Ord, 1973, Anselin,
1988, and Kelejian and Robinson, 1995). However, it is not necessary that proximity is measured
in terms of physical space. Other measures such as economic (Conley, 1999, Pesaran, Schuermann
and Weiner, 2004), or social distance (Conley and Topa, 2002) could also be employed. All these
are examples of dependence across nodes in a physical (real) or logical (virtual) networks. In the
case of the IVAR model, defined by (2) and (3), such contemporaneous dependence can be modelled

through an N x N network topology matrix R.!%-'! For example, in the case of a first order spatial

9 Appropriate rates for N,T 7, 0 needed for inference about the nonzero parameters in ¢, are established Section
4.

10A network topography is usually represented by graphs whose nodes are identified with the cross section units,
with the pairwise relations captured by the arcs in the graph.

17t is also possible to allow for time variations in the network matrix to capture changes in the network structure
over time. However, this will not be pursued here.
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moving average model, R would take the form

0 1 0 0 0 0 0
/2 0 1/2 0 0 0 0
0 1/2 0 1/2 ... 0 0 0
Rsna =1In +p; : : : L ’
0 0 0 0 .. 1/2 0 1/2
0O 0 0 0 0 1 0

where p, is the spatial moving average coefficient.

The contemporaneous nature of dependence across i € S is fully captured by R. As shown in
PT the contemporaneous dependence across i € S will be weak if the maximum absolute column
and row sum matrix norm of R are bounded, namely if ||R||, [[R]|, < K < oco. It turns out that
all spatial models proposed in the literature are in fact examples of weak cross section dependence.
More general network dependence such as the ‘star’ network provides an example of strong con-

temporaneous dependence that we shall consider below. The form of R for a typical star network

is given by
1 0 00
ro; 1 0 0
Rstar = rg1 0 0 0 |,
10
ryy 0 -+ 0 1

N
where erl = O(N).
j=2
The IVAR model when combined with u; = Re; yields an infinite-dimensional spatiotemporal
model. The model can also be viewed more generally as a ‘dynamic network’, with R and ®

capturing the static and dynamic forms of inter-connections that might exist in the network.

3.2 IVAR Models with Strong Cross Sectional Dependence

Strong dependence in IVAR model could arise as a result of CSD errors {u;}, or could be due to
dominant patterns in the coefficients of ®, or both. Strong cross section dependence could also

arise in the case of residual common factor models where the weighted averages of factor loadings
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do not converge to zero.!? Section 4 considers estimation and inference in the case of stationary
CSD IVAR models with unobserved common factors and/or deterministic trends. An example of
a stationary IVAR model where the column corresponding to unit ¢ = 1 in matrices ®, and R is
dominant is provided below.

The following assumption postulates that for any ¢, coefficient vector ¢; can be decomposed
into a sparse vector ¢,; = (¢;1,0,...,0,%;,0,...,0) and a vector ¢,; = ¢_q_; where ¢_; ; =

(07 ¢i27 HS] ¢i7i—17 0’ (Zsi,i-i-la ey ¢iN),'

ASSUMPTION 4 Let ® =YV | ¢ie, = ey + &1 where ¢, = (¢r4, ..., dn;) is the i column
of ®, e; is an N x 1 selection vector for unit i, with the i element of e; being one and the remaining
elements zero. Denote by &_ 1 the matriz constructed from ® by replacing its first column with a

vector of zeros, and note that b, = ZZ]\LQ a)ieg. Suppose as N — o0

o

®1

—0(1). (20)

r

Further, suppose that
H‘ﬁ—l,—iHr =0 (Nfl) uniformly for all i € N, (21)

namely there exists a constant K such that
K .
Hqi),l,,i”T < N for any i € S and any N € N.

ASSUMPTION 5 (Stationarity) ||®||, < p <1 for any N € N.

ASSUMPTION 6 The N x1 vector of errors w is generated by the ‘spatial’ model (3). E (usu}) =
¥ = RR’ is time invariant, where R = Zf\il rie, =te] + R_1, and ¥; = (T1iy 0oy ovs) is the it

column of matriz R. Suppose as N — oo
. 2 1
|| = o), (22)

[F1ll, = O (1), (23)

'2See Pesaran and Toesetti (2007, Theorem 16).
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and

lim |r_q || =0 for any i € N, (24)
N—o0

. . . !/
where € is an arbitrarily small constant, r—1 _; = (0,71, ..., 7i-1,0,7i 341, ..., 75N) , and r;; denotes

the (i,j) element of matriz R.

Remark 7 Assumptions 4 and 6 imply matric ® has one dominant column and matriz R has at
least one dominant column, but the absolute column sum for only one column could rise with N at
the rate N. Part (21) of Assumption 4 allows the equation for unit i # 1 to de-couple from the

equations for units j # 1, for any j # 1, as N — oo.

Remark 8 Using the maximum absolute column/row sum matriz norms rather than eigenvalues
in principle allows us to make a distinction between cases where dominant effects are due to a
particular unit (or a few units), and when there is a pervasive unobserved factor that makes all
column/row sums unbounded. Eigenvalues of the covariance matriz @ will be unbounded in both
cases and it will not be possible from the knowledge of the rate of the expansion of the eigenvalues

of 2, ® and/or R to known which one of the two cases are in fact applicable.

Remark 9 As it will become clear momentarily, conditional on x1; and its lagged values, process
{zit} become cross sectionally weakly dependent. We shall therefore refer to unit i = 1 as the

dominant unit.

Remark 10 [t follows that under Assumptions 5 and 6 the IVAR model specified by (2) and (3)

1s stationary for any N, and the variance of x; will be uniformly bounded.

Proposition 2 Under Assumptions 4-6 and as N — oo, equation for the dominant unit i = 1 in

the IVAR model defined by (2) and (3) reduces to
z1 — 0 (L,e) ey 0, (25)

where O (L,e1) = Y72, (e’fI’éf'l) Lt. Furthermore, for any fived sequence of weights w satisfying
condition (11),
Tt — 0 (L, w) e ™5 0. (26)
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The model for unit ¢ = 1 can be approximated by an AR(p1) process, which does not depend

on the realizations from the remaining units as N — oo. Let the lag polynomial
a(L,pr) =071 (L,er) (27)
be an approximation of 9! (L, e;). Then equation for unit i = 1 can be written as
a(L,p1)z1t = €14 (28)

The following proposition presents mean square error convergence results for the remaining cross

section units.

Proposition 3 Consider system (2), let Assumptions 4-6 hold and suppose that the lag polynomial
¥ (L,e1) defined in Proposition 2 is invertible. Then as N — oo, equations for cross section unit

i # 1 in the IVAR model defined by (2) and (3) reduce to
(1 — ¢y L) xiy — B; (L) x1¢ — Tii€it s 0, fori=2,3,... (29)
where
Bi(L) = ¢yl + [rin+9 (L, ¢_1_;) L] 91 (L,ey),
and

I(Lpo ) =3 (W0 @5 ) L', fori>1.
/=0

Remark 11 Ezclusion of the current value of x1; from (29) is justified only if r;1 = 0. But even

i this case xi will depend on lagged values of x1;.

Remark 12 Cross section unit 1 becomes (in the limit) a dynamic common factor for the remain-

ing units in the IVAR model. Note that setting x1; = f;, (29) can be written as'3
(1 — d)“L) Tit = Ti€it + Bz (L) ft, fori>1. (30)

Remark 13 Conditional on {21, x14-1,%1,¢—2,....}, the process {zy} fori > 1 is CWD.

214 could be equivalently approximated by cross sectional weighted averages of x; and its lags, namely

Tty Taw,t—1y eee-

Working Paper Series No 998

January 2009



Remark 14 For ¢; = 0 and ¢_; = 0, we obtain from (29) the following static factor model as a

special case

T .
(1 — gb“L) Tit = Tii€it + <’I"111> ft, fO’/“ 1> 1, (31)
where fi = x1;.

We now turn our attention to the problems of estimation and inference in IVAR models. In
what follows we consider the relatively simple case where there are no dominant units, but allow
for the possibility of unobserved common factors. The analysis of IVAR models featuring both
unobserved common factors, f;, and ® matrices with unbounded maximum absolute column sum

matrix norms is provided in a supplement, which is available from the authors on request.

4 Estimation of a Stationary IVAR

Assume x; = (214, ..., zn¢) is generated according to the following factor-augmented IVAR(1):
(1] (L) (Xt — o — Fft) = Uy, (32)

fort =1,2,...,T, where the vector of errors u; is generated by spatial model (3), namely u; = Rey,
® (L) =Iy — ®L, ® is N x N dimensional matrix of unknown coefficients, a = (ay,...,ay) is
N x 1 dimensional vector of fixed effects, f; is m x 1 dimensional vector of unobserved common
factors (m is fixed but otherwise unknown), I' = (1,73, ..., Yy) is N x m dimensional matrix of
factor loadings with its i-th row denoted as 'y;, and €, = (14, €94+, € Nt)/ is the vector of error terms
assumed to be independently distributed of fy Vt,t' € {1,..,T}.

Without major difficulties, one could also add observed common factors and/or additional deter-
ministic terms to the equations in (32), but in what follows we abstract from these for expositional
simplicity. System (32) models deviations of endogenous variables from common factors in a VAR.
Alternatively, one could introduce common factors directly in the residuals. This extension is
pursued in Pesaran and Chudik (2008), who focus on estimation of IVARs with dominant units.'*

Define the following vector of weighted averages Xy = W'x;, where W = (wy, wa, ..., wy)’

and {w; };V: , are my, X 1 dimensional vectors. Subscripts denoting the number of groups are again

4 This extension is not straightforward as it introduces infinite-lag polynomials in the corresponding auxiliary
cross-section augmented regressions for the individual units.
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omitted where not necessary, in order to keep the notations simple. Matrix W does not correspond

to any spatial weights matrix. It is any arbitrary matrix of pre-determined weights satisfying the

following granularity conditions!'®
_1
Wl = o(n3), (33)
[l 1 :
= O(N 2) for any 7 < N. (34)
Wi

We consider the problem of estimating the parameters of equation ¢ € N in a non-nested
sequence of models (32) as both N and T tend to infinity, where ® can be decomposed as
® =D S+ P;. See (6). As an important example we consider the two-neighbor IVAR model
defined by (5). In the case of this model the vector of unknown coefficients of interest for the 4"
equation is on the it row of D, defined by (7) namely &; = (Pii1: Piss ¢i,i+1)/ for ¢ ¢ {1, N}, with
h; = 3, and the corresponding N x 3 matrix S; = (e;_1,e;,e;41) in S = (Sy, S, ...,Sx)", which
selects the unit i and the left and the right neighbors of unit 4.1° In what follows we set &;, = Slx;,
and note that it reduces to (z;—1+, Zit, Ti+1+) in the case of the two-neighbor IVAR model.

We suppose that the following assumptions hold for any N € N and ¢ € {1,..,N}, unless

otherwise stated.

ASSUMPTION 7 (General limiting restrictions) The it" row of matriz ® can be decomposed as,

¢; = Si0; + Py, (35)
where
K
Al = < = 36
||¢szr je?ll?.},(N} }‘bbw‘ N’ ( )

S; is predetermined and known N x h; dimensional matriz, ||S;||. < K, and h; < K. The unknown
coefficients and the fived effects are bounded, namely ||6;|| < K and |o;| < K. For any i € N, there

exists constant Ng € N such that the vector of unknown coefficients 8; do not change with N > Njy.

' Condition (34) is understood as
lwyll . K ,
= < —, for any j € {1,.., N} and any N € N,
Wl — VN

where constant K < oo does not depend on N nor on j.
6 The first and the last unit has only one neighbor.
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ASSUMPTION 8 (Stationarity) | ®| < p < 1.

ASSUMPTION 9 (Weakly dependent errors with finite fourth moments) Innovations {sjt}j.v:l
are identically and independently distributed with mean 0, unit variances and finite fourth moments.

Furthermore, matriz R has bounded row and column matrix norms.

ASSUMPTION 10 (Awailable observations) Available observations are Xg,Xi,...,Xp with the

starting values xo = > o0 ®'Re (—4) + a + I'fy.17

ASSUMPTION 11 (Common factors) Unobserved common factors fig, ..., fmt follow stationary

MA(00) processes:

foo =0, (L)efst, fors=1,..,m, (37)

where polynomials g (L) = Y 2, Y L' are absolute summable, €pst ~ 11D (0,0%5), and the
fourth moments of s are bounded, E (5;%“) < 00. €54 18 independently distributed of e for any
t,t' € T, and any s € {1,..,m}. Polynomials ¢4 (L) and variances Ugfs , for s € {1,..,m}, do not

change with N and the covariance matriz E (£,£]) is positive definite.
ASSUMPTION 12 (Bounded factor loadings) ||v;| < K.

Remark 15 (Eigenvalues of ®) Assumption 8 implies polynomial ® (L) is invertible (for any
N eN) and

0(®)<p<1. (38)

This is in line with the first part of Assumption 2 and is therefore sufficient for stationarity of x; for
any N € N. Also, as noted in Section 3, this assumption rules out explosive variance of individual
elements of the vector x; as N — oo. Furthermore, since | ®||, < VN ||®||, Assumption 8 rules
out cases where | ®||. diverges to infinity at the rate N. Hence the dominance of a particular unit

or units due to the coefficient matriz ® is also ruled out by this assumption.

Remark 16 The spectral norm of covariance matriz E (ugu)) = X is bounded in N under As-
sumption 9, since |RR’| < |RR/[|, < ||R], |RJ,.1® w; is therefore a cross sectionally weakly
dependent process, which, as shown in Pesaran and Tosetti (2007), includes all commonly used

spatial processes in the literature.

'"We use notation € (—¢) instead of e_, in order to avoid possible confusion with the notation used in previous
sections.

BIAl < VIATLTA], for any matrix A.
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Multiplying system (32) by the inverse of polynomial @ (L) and then by W' yields
Xwe = aw + Cwi; + Oy, (39)
where Xy = W'xy, oy = W, Ty = W'T, Oy = Wuy, and
o0
vy = Z dlu,_y. (40)
=0
Under Assumption 9, {u;} is weakly cross sectionally dependent and therefore

Var (@w)l =

ZW’@@MWH ,
=0

2

I

< WPy @
£=0

= O(N), (41)

where |[W]|? = O (N1 by condition (33), ||| = O (1) by Assumption 9 (see Remark 16) and
S0 |[®1] < >, |®]° = O (1) under Assumption 8. This implies Ty = O, (N_%> and the

unobserved common factors can be approximated as

N[

T/ Tw) T, (R —aw) = £+ 0, (v3). (42)

provided that the matrix T,WTW is nonsingular. It can be inferred that the full column rank of
T is important for the estimation of unit-specific coefficients. Pesaran (2006) shows that the full
column rank is, however, not necessary if the object of interest is a panel estimation of the common
mean of the individual coefficients as opposed to the consistency of individual-specific estimates.

Using system (32), equation for unit ¢ can be written as:
Ty — o — i = 0,8} (x¢—1 — e = T 1) + (i1 + war, (43)

where

Cit = Pipve = Op <N7%> ; (44)
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since the vector ¢;;, satisfies condition (33) under Assumption 7. It follows from equation (39) that

~vif — ¢, Tfi—1 = blyXwy + bloXw 1 — (bi1 + bi2) @w — b} Ty — blyTw,1, (45)

S 1_ ., \-1_
where b;; =« (I‘;VFW) I‘;/V and by = —4;S/T’ (I‘/WI‘W> F;V. Substituting equation (45)

into equation (43) yields
Tit = ¢ + 03811 + biyXw + bioXw—1 + it + G, (46)

where ¢; = a; — ¢}, — (b;; + biz) @y, and

=

) : (47)

Git = Ciy1 — b Owi — bigTw,—1 = O, (N
Consider the following auxiliary regression based on the equation (46):
Tit = GiyTi + €it, (48)

where € = u; + qit, ™ = (ci, 4, . ;2), is k; x 1 vector of coefficients associated to the vector of
/
regressors g = (1, £gvt_1,i§m,i§ﬁ,¢_l) ,and k; = 1+ h; + 2my,. Let 7; be the least squares (LS)

estimator of r; :
-1
T

T
T = <Z gitg§t> Z 8itLit- (49)
t=1 t=1

We denote the estimator of coefficients §; given by the corresponding elements of the vector 7;
as the cross section augmented least squares estimator (or CALS for short), denoted as Siyc ALS-
Asymptotic properties of 7; (and Si?cALs in the case where the number of unobserved common
factors is unknown) are the objective of this analysis as N and T tend to infinity.

First we consider the case where the number of unobserved common factors equals to the

dimension of Xy¢ (m = my,), and make the following additional assumption.

ASSUMPTION 13 (Identification of m;) There exists Ty and No such that for all T > Ty,
-1

N > Ny and for any i € {1,.., N}, (T‘1 ZtT:l gitggt) ezists, Cin = E (gi8g);) is positive definite,

and HC;A}H =0(1).
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Remark 17 Assumption 13 implies Ty is a square, full rank matriz and, therefore, the number
of unobserved common factors is equal the number of columns of the weight matriz W (m = my, ).
In cases where m < my,, full augmentation of individual models by (cross sectional) averages is not

necessary.

Theorem 1 Let x; be generated by model (32), Assumptions 7-13 hold, and W is any arbitrary
(pre-determined) matriz of weights satisfying conditions (33)-(34) and Assumption 13. Then as
N, T ERN (in no particular order), the estimator 7; defined in equation (49) has the following

properties.

a)

~

P
; —m; — 0.

b) If in addition T/N — 3, with 0 < 3 < oo,

Y Gy (@i~ ) BN (0,L,) (50)
Oii,N
1
where O'?,L-?N = Var (uy) = E (e;RR'e;), and C? is square root of positive definite matriz

Cz’N =F (gitggt). AlSO

Cin — Cin 20, and oy 5 — Giiy 2 0,
where
1 & 1 &
= ~2 ~2
Civ = T Z git8it» i, N = Z Uit (51)
=1 =1

~ )~
and Uit = Tip — G Ty

Remark 18 Suppose that in addition to the assumptions of Theorem 1, the limits of C;A} and

-1
1007

and o, __, respectively.'? Then (50) yields

2 . .
0N » as N — oo, exist and are given by C 1,000

VT (# —m) 2 N (0,02 .G L) (52)

9Sufficient condition for limy_,eo Cin to exist is the existence of the following limits (together with Assumptions
7-12): imy— oo S, imy oo SiT, imy oo W'T, limy oo W' e, and limy—oe > o0, Si®@‘RR/®'S,;.

ECB
Working Paper Series No 998
January 2009



Consider now the case where the number of unobserved common factors is unknown, but it is
known that m,, > m. Since the auxiliary regression (48) is augmented possibly by a larger number
of cross section averages than the number of unobserved common factors, we have potential problem
of multicollinearity (as N — o). But this observation has no bearings on estimates of d; so long as
the space spanned by the unobserved common factors including a constant and the space spanned
by the vector (1,?{%5)' are the same as N — oo. This is the case when Ty has full column rank.
Using partition regression formula, the cross sectionally augmented least squares (CALS) estimator

of h; x 1 dimensional vector §; in the auxiliary regression (48) is
= -1
dicars = (ZiMpZ;)  ZiMpgXo, (53)

where x;o = (.%1'1, "'>$iT)/> Z; = [521 (_1) 752‘2 (_1) ) '-'>£ihi (_1)]7 sir (_1) = (gir0> "-7§i,r,T—1)/ for
re{l,..h}, My =Ip,—HMHH)"H H= [T, Xw,Xw (—1)], 7 is T x 1 dimensional vector of
ones, Xy = (Xiw1os -, XiWmuyo)s Xw (—1) = [Xw1 (1), e, Xwmy, (1)), Xwso = @wet, -, Twsr)

and Xy (—1) = (Twso, ...,fWS,T_l)' for s € {1,..,my}. Define for future reference vector v;; =

Sivy = §;; — SIT'f, — Sla, and the following matrices.

Q: [T,F,F(—l)]) (54)
and
1 ay [
A = U .
(2m~+1)x(2my,+1) 0 FW Omew ) ( )

=/
O Omxmw FW

where F = (flo7 ceny fmo); F (—1) = [fl (—1) g sery fm (—1)], fro = (frl, ceey frT)/ and fT (—1) = (fT(), ceey fT‘,T—1>/
for r € {1,..,m}.
For this more general case we replace Assumption 13 with the following (and suppress the

subscript N to simplify the notations)

ASSUMPTION 14 (Identification of §;) There exists Ty and No such that for all T > Ty,
N > Ny and for any i € {1,..,N}, (T_lngHZi)_1 exists, Ty is full column rank matriz,

Qui = E (vievly) = > 02, S§<I>£RR'<I>’ZSZ- is positive definite and HQ;}H =0(1).
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Theorem 2 Let x; be generated by model (32), Assumptions 7-12, and 14 hold, and W is any
arbitrary (pre-determined) matriz of weights satisfying conditions (33)-(34). Then if in addition
N, T 9, 50 such that T/N — 3, with 0 < 3 < 00, the asymptotic distribution of Si,CALS defined by

(563) is given by.
VT

Oij

~

1
Q2 (5i7CALS = 51‘) 2N (0,In,), (56)

2 0o ¢
where o3, = Var (uy), Qv = E (vigvly) and vy = Sivg = > 2, Si®uy_y.

Remark 19 As before, we also have

\/T (5@0;@3 — (52) g N (0,0’2 Q!

42,00 vi,oo) ’

2

1 1 2
where Qyi 0o = My 00 Oy, and Oioo = limy_,00 05 -

Extension of the analysis to a IVAR(p) model is straightforward and it is relegated to a Sup-

plement available from the authors upon request.

5 Monte Carlo Experiments: Small Sample Properties of CALS

Estimator

5.1 Monte Carlo Design

In this section we report some evidence on the small sample properties of the CALS estimator in the
presence of unobserved common factors and weak error cross section dependence and compare the
results with standard least squares estimators. The focus of our analysis will be on the estimation
of the individual-specific parameters in an IVAR model that also allows for other interactions that

are of order O(N~—1). The data generating process (DGP) is given by

Xt —Vfr = ® (%41 — vfim1) + uy, (57)

where f; is the only unobserved common factor considered (m = 1), and v = (74, ...,vx) is the
N x 1 vector of factor loadings.
We consider two sets of factor loadings to distinguish the case of weak and strong cross section

dependence. Under the former we set v = 0, and under the latter we generate the factor loadings
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v;, for ¢ = 1,2,..., N, from a stationary spatial process in order to show that our estimators are

invariant to the cross section dependence of the factor loadings. The following bilateral Spatial

Autoregressive Model (SAR) is considered.

Ay

’Yi_#'y:

(Vi1 +Yig1) = Qyfiy + 75

(58)

where 7., ~ ITDN (0,0%,). As established by Whittle (1954), the unilateral SAR(2) scheme

Vi = Yy1Vie1 T Yy2Vie2 T Ny

(59)

with ¥ = —2by, 9 = bg and b, = (1 —4/1- a?y> /a~, generates the same autocorrelations as

the bilateral SAR(1) scheme (58). The factor loadings are generated using the unilateral scheme

(59) with 50 burn-in data points (i = —49, ...

2

ay = 04, p, =1, and choose o;,

according to the AR(1) process

fe=ppfie1 + s g~ IIDN (0,1 = p})

with p; = 0.9.

,0) and the initializations v_g5; = v_57 = 0. We set

such that Var (y;) = 1.2 The common factors are generated

In line with the theoretical analysis the autoregressive parameters are decomposed as ® = ®,+

®;,, where ®, capture own and neighborhood effects as in

v Y
Yy po
0
5, by
0 O
0 O

20The variance of factor loadings is given by

0 0 0
Yy 0 0
3 Y3 0
Yy ¢4 |
YN-1
0 YN PN

o (L+9) [(1—93,) —v3] .

Ony =

(1 - ¢72)
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and the remaining elements of ®, defined by ®;, are generated as

)\iwij for j ¢ {’L —1,4,%+ 1}
gbbij = s where
0 forje{i—1,,i+1}

Ai ~ IIDU (—0.1,0.2) and w;; = Z;Jg (60)
j=1Sij

with ¢;; ~ IIDU (0,1). This ensures that ¢;; = Op(N 1), and limy_oo B (¢y;;) = 0, for all i and
j.
With @, as specified above, each unit ¢, except the first and the last, has two neighbors: the

‘left’ neighbor i — 1 and the ‘right’ neighbor i + 1. The DGP for the i*" unit can now be written as

T = P1T1-1 Y1241 + ¢§,1th1 +y1ft — ¢,1'7ft71 + U1,
Tit = @iTit—1+V; (Tic14-1 + Tiv1,0-1) + GpXe—1 + Vi fr — iy fio1 + wir, i € {2,.., N — 1},

TNt = ONTNi-1+UNEN-1-1+ Pp NKe—1 + VNSt — ONY i1+ une.

To ensure the DGP is stationary we generate ; ~ [1DU (0.4,0.6), and ¢; ~ IIDU (—0.1,0.1)
for ¢ # 2. We choose to focus on the equation for unit ¢ = 2 in all experiments and we set ¢, = 0.5
and thy = 0.1. This yields ||®]|, < 0.9, and together with |p;| < 1 it is ensured that the DGP is
stationary and the variance of x;; is bounded in N. The cross section averages, T, are constructed
as simple averages, Ty = N -1 Zjvzl Tit.

The N-dimensional vector of error terms, uy, is generated using the following SAR model:

U = QuUu2¢ + E1¢,
Ay .
wir = o (wim1e + wiz1¢) + it 1 € {2,..,N — 1}
UNt = GuUN-1t 1+ ENt,

for t = 1,2,..,7. We set a, = 0.4 which ensures that the errors are cross sectionally weakly

dependent, and draw &, the i element of €;, as IIDN (0,02). We set 02 = N/tr (R,R),) so that
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on average Var(u;) is 1, where R, = (I — a,,S)™!, and the spatial weights matrix S is

01 0 0 0
1 1
30 4 0 0
03 0 3 0
S — 2 2 (61)
1 1
3 0 3
0 0 0 1 0

In order to minimize the effects of the initial values, the first 50 observations are dropped.
N € {25,50,75,100,200} and T € {25,50,75,100,200}. For each N, all parameters were set at the
beginning of the experiments and 2000 replications were carried out by generating new innovations
ity Mgt and My

The focus of the experiments is to evaluate the small sample properties of the CALS estimator of
the own coefficient ¢, = 0.5 and the neighboring coefficient ¢, = 0.1. The cross-section augmented
regression for estimating coefficients {¢,, 15} in the case of the second cross section unit is given

by (similar results are also obtained for other cross section units)
Top = €2 + o (T11—1 + T34-1) + Po%2—1 + 02,0T¢ + 02,1T4—1 + €24 (62)

We also report results of the Least Squares (LS) estimator computed using the above regression
but without augmentation with cross-section averages. The corresponding CALS estimator and
non-augmented LS estimator are denoted by Py cars and Py ;g (own coefficient), or 1}2,0 ArLs and
@27 s (neighboring coefficient), respectively.

To summarize, we carry out two different sets of experiments, one set without the unobserved
common factor (v = 0), and the other with unobserved common factor (v # 0). There are
many sources of interdependence between individual units: spatial dependence of innovations {w; },
spatiotemporal interactions due to coeflicient matrices ®, and ®;, and finally in the latter case
with v # 0 the cross section dependence also arises via the unobserved common factor f; and
cross-sectionally dependent factor loadings. Additional intermediate cases are also considered, the

results of which are available in a Supplement from the authors on request.?!

21Supplement presents experiments with all combination of zero or nonzero coefficient matrix ®, zero or nonzero
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5.2 Monte Carlo Results

Tables 1-2 give the bias (x100) and RMSE (x100) of CALS and LS estimators as well as size and
power of tests at the 5% nominal level. Results for the estimated own coefficient, ¥y o 47s and
$9.1,5, are reported in Table 1. The top panel of this table presents the results for the experiments
with an unobserved common factor (v # 0). In this case, {z;t} is CSD and the standard LS
estimator without augmentation with cross section averages is not consistent. The bias of ¥y ;¢ is
indeed quite substantial for all values of N and T" and the tests based on $, 1 ¢ are grossly oversized.
CALS, on the other hand, performs well for 7' > 100 and all values of N. For smaller values of T,
there is a negative bias, and the test based on Qg ¢ 41,5 is slightly oversized. This is the familiar time
series bias where even in the absence of cross section dependence the LS estimator of autoregressive
coefficients will be biased in small T' samples.

Moving on to the experiments without a common factor (given at the bottom half of the table),
we observe that the LS estimator slightly outperforms the CALS estimator. In the absence of
common factors, {z;} is weakly cross sectionally dependent and therefore the augmentation with
cross section averages is (asymptotically) redundant. Note that the LS estimator is not efficient
because the residuals are cross sectionally dependent. Augmentation by cross-section averages
helps to reduce part of this dependence. Nevertheless, the reported RMSE of 9 475 does not
outperform the RMSE of @, /g.

The estimation results for the neighboring coefficient, v, are presented in Table 2. These are
qualitatively similar to the ones reported in Table 1. Cross section augmentation is clearly needed
when common factors are present. But in the absence of such common effects, the presence of weak
cross section dependence, whether through the dynamics or error processes, does not pose any
difficulty for the least squares estimates so long as N is sufficiently large. Finally, not surprisingly,
the estimates are subject to the small T' bias irrespective of the size of N or the degree of cross
section dependence.

Figure 1 plots the power of the CALS estimator of the own coefficient, $9 -4y, (top chart)
and the neighboring coefficient, 1//;2,0 aLs, (bottom chart) for N = 200 and two different values
of T € {100,200}. These charts provide a graphical representation of the results reported in

Tables 1-2, and suggest significant improvement in power as 1" increases for a number of different

factor loadings -y, and low or high cross section dependence of errors (a, = 0.4 or a, = 0.8).
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alternatives.

6 An Empirical Application: a spatiotemporal model of house

prices in the U.S.

In a recent study Holly, Pesaran and Yamagata (2008, HPY) consider the relation between real
house prices, p;;, and real per capita personal disposable income y;; (both in logs) in a panel of
49 US States over 29 years (1975-2003), where ¢« = 1,2,...,49 and t = 1,2,...,7. Controlling
for heterogeneity and cross section dependence, they show that p;; and y;; are cointegrated with

coefficients (1, —1), and provide estimates of the following panel error correction model:
Apit = ¢ + wi(Pit—1 — Yig—1) + 01iApi t—1 + 02iAYir + Vig. (63)

To take account of unobserved common factors HPY augmented (63) with cross section averages
and obtained common correlated effects mean group and pooled estimates (denoted as CCEMG
and CCEP) of {w;, d1;, 02;} which we reproduce in the left panel of Table 3. HPY then showed that
the residuals from these regressions, 0;, display a significant degree of spatial dependence. Here
we exploit the theoretical results of the present paper and consider the possibility that dynamic
neighborhood effects are partly responsible for the residual spatial dependence reported in HPY.
To this end we considered an extended version of (63) where the lagged spatial variable Apit_l =
Eévzl $ijApj—1 is also included amongst the regressors, with s;; being the (¢, j) element of a spatial

weight matrix, S, namely
Apit = ¢; + wi(pit—1 — Yit—1) + 01:Apit—1 + V;Apf 1 + 021 Ay + vir. (64)

Here we consider a simple contiguity matrix s;; = 1 when the states ¢ and j share a border and
zero otherwise, with s; = 0. Possible strong cross section dependence is again controlled for by
augmentation of the extended regression equation with cross section averages. Estimation results
are reported in the right panel of Table 3. The dynamic spatial effects are found to be highly
significant, irrespective of the estimation method, increasing R? of the price equation by 6-9%.

The dynamics of past price changes are now distributed between own and neighborhood effects

Working Paper Series No 998



giving rise to much richer dynamics and spill over effects. It is also interesting that the inclusion
of the spatiotemporal variable Apf’t_l in the model has had little impact on the estimates of the

coefficient of the real income variable, d9;.

7 Concluding Remarks

This paper has proposed restrictions on the coefficients of infinite-dimensional VAR (IVAR) that
bind only in the limit as the number of cross section units (or variables in the VAR) tends to
infinity to circumvent the curse of dimensionality. The proposed framework relates to the various
approaches considered in the literature. For example when modelling individual households or firms,
aggregate variables, such as market returns or regional /national income, are treated as exogenous.
This is intuitive as the impact of a firm or household on the aggregate economy is small, of the
order O (N _1). This paper formalizes this idea in a spatio-dynamic context.

It was established that, under certain conditions on the order of magnitudes of the coefficients
in a large dynamic system, and in the absence of common factors, equations for individual units
decouple as N — oo and can be estimated separately. In the presence of a dominant economic agent
or unobserved common factors, individual-specific VAR models can still be estimated separately
if conditioned upon observed and unobserved common factors. Unobserved common factors can
be approximated by cross sectional averages, following the idea originally introduced by Pesaran
(2006).

The paper shows that the GVAR approach can be motivated as an approximation to an IVAR
featuring all macroeconomic variables. This is true for stationary models as well as for systems
with integrated variables of order one. Asymptotic distribution of the cross sectionally augmented
least-squares (CALS) estimator of the parameters of the unit-specific models was established both
in the case where the number of unobserved common factors is known and in the case where it is
unknown but fixed. Small sample properties of the proposed CALS estimator were investigated
through Monte Carlo simulations, and an empirical application was provided as an illustration of
the proposed approach.

Topics for future research could include estimation and inference in the case of IVAR models
with dominant individual units, analysis of large dynamic networks with and without dominant

nodes, and a closer examination of the relationships between IVAR and dynamic factor models.
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Table 3: Alternative Average Estimates of the Error Correction Models for House
Prices Across 49 U.S. States over the Period 1975-2003

Holly et al. (2008) regressions | Regressions augmented with
without dynamic spatial effects dynamic spatial effects
Apiy MG CCEMG CCEP MG CCEMG | CCEP
Dit—1 — Yie—1 —0.105 —0.183 —0.171 —0.095 —0.154 —0.152
(0.008) (0.016) (0.015) (0.009) (0.018) (0.018)
Api -1 0.524 0.449 0.518 0.296 0.188 0.272
(0.030) (0.038) (0.065) (0.060) (0.049) (0.082)
Ayiq 0.500 0.277 0.227 0.497 0.284 0.201
(0.040) (0.059) (0.063) (0.040) (0.059) (0.088)
Api i1 - - - 0.331 0.350 0.431
(0.066) (0.085) (0.105)
R? 0.54 0.70 0.66 0.60 0.79 0.72
Average Cross Correlation
B 0.284 —0.005 —0.016 0.267 —0.012 —0.016
Coefficients ( p )

Notes: MG stands for Mean Group estimates. CCEMG and CCEP signify the Common Correlated Effects Mean Group and
Pooled estimates defined in Pesaran (2006). Standard errors are in parentheses. 5 denotes the average pair-wise correlation of

the residuals from the cross-section augmented regressions across the 49 U.S. States.
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Appendix

A Lemmas and Proofs

Proof of Proposition 1. For any N € N, the variance of x; is
Q=Var(x,) = Y _ &Td", (65)
£=0
and, ||€2|| is under Assumptions 1-2 bounded by

Il <=1 1®l* =0 (N"). (66)
£=0

It follows that for any arbitrary nonrandom vector of weights satisfying granularity condition (11),
[Var (w'xi) || = [[w'@w| < [lo(2) (w'w)], (67)

where ¢(Q) = ||| = O (N'™), and w'w =|w|]> = O (N~') by condition (11). This implies |[Var (w'x.)|| =

O (N~°) and limy o0 [|[Var (w'x¢)|| = 0. m

Proof of Corollary 1. Assumption 3 implies that for ¢ € I, vector ¢, satisfies condition (11). It follows from

Proposition 1 that

J\;me Var (¢y;x:) =0 for i € K. (68)
System (2) implies
Tit — d);xt,l — Ui = ¢/bxt,1, for any : € S and any N € N. (69)

Taking variance of (69) and using (68) now yields (19). m

Proof of Proposition 2. Solving (2) backwards yields

=3 (®R) e, (70)
=0

where R = 1€} + R_1. Hence

it — Z (ei{)ei’-l) E1,t—0 = Z (ell@ZR_1) Et—y. (71)
£=0 £=0

Under Assumptions 4-6,

Var (i (e’ltﬁlR_l) €t_g> = ieﬁ@lﬁ_lfiilé'eel,

£=0 £=0

IN

61R71RL161 + Zell‘I)el'lfﬂﬁ,l,l{)weL (72)

=1
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But

Jim_ He;R,lﬁLlelH = Jim [ =0 (73)

under Assumption 6. Set aj = e} ®* and let as,_; = (0, asz, ..., aen) . Note that under Assumptions 4-5:

lacll, < o, (74)

ann = 0O(1), (75)

lac,—1ll, = O(NTY), (76)

for £=10,1,2,.... Result (74) follows from Assumption 5 by taking the maximum absolute row-sum matrix norm of

a) = e/ ®".** Results (75)-(76) follow by induction directly from Assumptions 4-5. Using (74)-(76), we have

Ze'ltI)ef‘{,lR'_li"eel Za}R,1RL1a4

)

=1 =1
< Za?lrl_lr,l + Zaé,—lRflRl—laé,—l ,
=1 =1
2 2 :
< Ul D00+ Rl S aeall, flaeall, (77)
=1 =1
. 2

where as before limy .o [[r—1]|> = 0 under Assumption 6, 33>, p*>* = O (1) by Assumption 5, HR—I =0 (N')

by Assumption 6, and 352, [lac,—1]]> < 3252, lac,—1]l, [|ac,—1]|, = O (N™') by properties (74)-(76). It follows that
limy oo HZZI eﬂ@eﬁflRll‘I)’eelH = 0. Noting that F [ZZO (eﬂ@ZR,l) Et_g] =0, we have

Z (e'l'IJR,l) er_¢ 5 0,as N — oo. (78)
=

o

This completes the proof of equation (25). To prove (26), we write

Twt —

NgE:

I xlo
(W L r1) El,t—¢ =
£=0 14

3 (W'@é}:{_1> cre. (79)
=0

Since the vectors {w’®"} have the same properties as vectors {a,} in equations (74)-(76), it follows that (using the

same arguments as above),

NgE:

(WI(I)ZR_l) g0 %0, as N — oo. (80)

~

=0
This completes the proof of equation (26). m

Proof of Proposition 3.
/ U
Tit — PyTit—1 — Py _;Xe—1 — @ T1,4—1 — Ti1€1¢ — Tii€it = T_1 _;E¢ (81)

The vector r_i,_; satisfies equation (24) of Assumption 6, Var (e;) = In, and E (g;) = 0, which implies

Zlall, < [ler @], < lletll, @l < o
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Result (25) and invertibility of polynomial ¢ (L, e1) implies
9 (L, e1) Tt —e1e "5 0. (83)
Finally, since ¢_, _; satisfies condition (11) under Assumption 4, equation (26) implies
¢ 1 _xe1—9(L,p_y _;)ere1 0. (84)
Substituting results (82)-(84) into (81) establishes equation (29). m

Lemma 1 Let Assumptions 8 and 9 hold and suppose N, T Iy 00 at any rate. Then for any p,q € {0,1} and for

any sequences of non-random vectors @ and ¢, such that ||0] = O (1) and ||¢|. = O (1), we have

T
1
7 > 0v, 5o, (85)
t=1
and
L I
T Z 0'vi_pp'vi_g — B (0'vi_p'vi_q) 5 0, (86)
t=1

where the process vy is defined in equation (40). Furthermore, if ||@| = O (N_%) then

T
7\/TN > 6'v, %0, (87)
t=1

and
T
VN
-5 ZB'vt_pcp"ut_q - F (v NO'vt_pcp"ut_q) 2. (88)
t=1

Proof. Let T = T (N) be any non-decreasing integer-valued function of N such that limy_.cc Tn = co. Consider

the following two-dimensional array {{snt, ft}fifoo}::l, defined by
1
KNt = Eglvtflﬁ

where the subscript N is used to emphasize the number of cross section units,”®> and {F;} denotes an increasing
sequence of o-fields (Ft—1 C F) such that F; includes all information available at time ¢ and k¢ is measurable with

respect to F; for any N € N. Let {{cNt}fi_oo}]ovo:l be two-dimensional array of constants and set cnt = ﬁ for all

SEEESIE

t € Z and N € N. Note that

i L S 3T ]
£=m pp

< <, (89)

23 Note that vectors v; and @ change with N as well, but the subscript N is omitted here to keep the notation
simple.
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where m,,, = max {n,p} and**

6 = sup { O] 12 [|®]2»2) S @2 L.
NE%{l I 1=l >l

£=0

Using Assumptions 8 and 9, ¢,, has the following properties

so=0(1), and ¢, — 0 as n — oo. (90)

By Liapunov’s inequality, F |E (knt | Fr—n)| < \/E {IE (knt | ft,n)]Q} (Davidson, 1994, Theorem 9.23). It follows
that the two-dimensional array {{nNt, ft}z_m}?zl is Li-mixingale with respect to the constant array {cn:}. Equa-

tions (89) and (90) establish array {xn¢/cn¢} is uniformly bounded in Le norm. This implies uniform integrability.?®

Note that
Tn Tn 1
]\;I_I:IIDO CNt = ]}gnmz ﬁ =1< o0, (91)
t=1 t=1
Tn Tn 1
. 2 . 1
A}gnoo t_zl Ny = 1\}1_r}noO t_zl i) 0. (92)

Therefore array {{ﬁ?Nt»]:t}:iioo}jvozl satisfies conditions of a mixingale weak lavv,26 which implies 22"1 KNt Ly 0,

ie.:
1 T L
720V 20,
t=1

as N, T I, o0 at any rate. Convergence in Lj norm implies convergence in probability. This completes the proof of the

result (85). Under the condition ||@| = O (Nfé)7 result (87) follows from result (85) by noting that H\/NBH =0(1).

Result (86) is established in a similar fashion. Consider the following two-dimensional array

{H{ene, Feyee_ o }T\ro:w defined by?*"

1
—F (Blvt—p(plvt—q) )

K :LG/U v —
Nt T t—pP Vt—gq Ty

where as before Tv = T (N) is any non-decreasing integer-valued function of N such that limy .o Tn = co. Set

CNt = ﬁ for all t € Z and N € N. Note that

E (m | ft—n)
CNt

oo oo
E ZG'@S_put_s Z PNy | Fin | - E (0'vipp'viyg),

s=p L=q

oy [G’QS*Put_Sgo’@-Hut_g _E (0’<1>S*Put_sgo’q>“*qut_,5)] .

S=M pp £=m ngq

2 We use submultiplicative property of matrix norms (||AB|| < ||A]|||B|| for any matrices A, B such that AB is
well defined) and the fact that the spectral matrix norm is self-adjoint (i.e. ||A’|| = ||A||). Note also that Assumption
8 implies > .o, H'SI)ZH2 =0(1).

25 Qufficient condition for uniform integrability is Li4. uniform boundedness for any & > 0.

¥ Davidson (1994, Theorem 19.11).

2T As before, {F;} is an increasing sequence of o-fields (Fi—1 C Fi) such that F; includes all information available
at time ¢ and Ky is measurable with respect of F; for any N € N.
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Let 0, = 6'®° and ¢, = ' ®*.

SN S Y O Ol ) -

S=m pp €=M gpn J=M pp d=m gn

_ ( Z Z E(G;_put,scpziqut,g) . (93)

&
—
=
/N
o | x
g
Ny
3
~
—_

n
——
Il

S=M pn €= gpn

Using the independence of u; and uy for any ¢ # ' (Assumption 9), we have

Z Z F (Bg,put,snpzfqut,g) = Z 0'@57’72‘1)'27‘130
S=m pp £=m gn £=max{p,q,n}

IN

Sa,n»

where

oo
\n, 0
Sa,n = Sup {|9| el =] [ @] @S |12 } )
NeN

£=0
and x; (p,n,q) = max{0,q — p,n — p} + max{0,p — ¢,n — q}. |=|| = O (1) by Assumption 9, 332 [|®[|* = O (1)

by Assumption 8, ||8] = O (1), |||l < |l¢ll. = O (1), and <, , has the following properties
Sa0 =0(1), and ¢,,, — 0 as n — oco. (94)

Similarly, using the independence of u; and uy for any t # ' (postulated in Assumption 9),?® the first term on the

right side of equation (93) is bounded by the following upper bound gy ,,:

2 2 2(L— 2(6— 2
S = sup QIBI-617 l” D IRIPCTY 2

¢=max{p,q,n}

0o 2
+11017 =1 [l |® [ @ X2 <Z lli’lﬂ) }

£=0

where x5 (p,n,¢) = max {0,n — p} + max{n — ¢,0}, B is N x N matrix with the element (7, 7) equal to ||¥,;||, and

W,; is N x N matrix of fourth moments with the element (n, s) equal to E (uitujiuntust). It follows from Assumptions

2Bp (B'S_put,ﬂ%_qut,g%,put,ﬂ%_qut,d) is nonzero only if one of the following four cases: i) s = £ = j = d, 1)
s=L0#j,and j=d, i) s=7,jF# L and L =d,oriv) s=d,d# ¢ and £ = j.
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8 and 9 that ¢, ,, has following properties®’

spo=0(1), and g5, — 0 as n — oo. (95)

2
FE { [E ('”W | Fie n)} } is therefore bounded by <, =S4, + Sb,n- Equations (94) and (95) establish

CNt

so=0(1), ¢, —0asn— oo. (96)

By Liapunov’s inequality, F |E (knt | Fi—n)| < \/E{[E (kne | ft,n)]z} (Davidson, 1994, Theorem 9.23). It follows

that the two-dimensional array {{nNt,]-}}fi_oo}oo

Ne1® is Li-mixingale with respect to a constant array {cn¢}. Fur-

thermore, (96) establishes array {kn¢/cn¢} is uniformly bounded in Lz norm. This implies uniform integrability.®’

Since also equations (91) and (92) hold, array {{xn¢, Fe}io _ }%_ satisfies conditions of a mixingale weak law,*!

N=1

which implies Zti’l KNt I 0, i.e.:

1
T Z O'Ut,pcp'vt,q —F (B'Ut,pcp'vt,q) L—1> 0,

as N, T 2, 00 at any rate. Convergence in L; norm implies convergence in probability. This completes the proof of

result (86). Under the condition ||0] = O (N_%), result (88) follows from result (86) by noting that H\/NBH =0(1).
]

Lemma 2 Let x;: be generated by model (32), Assumptions 7-12 hold, and N,T 4 00 at any rate. Then for
any p,q € {0,1}, and for any sequences of non-random vectors 8 and ¢ with growing dimension N x 1 such that

18]l = O (1) and |l¢]l, = O (1), we have

T
Z Xi—p — E (0'xt—p) 20, (97)

’ﬂ \

*’Matrix B is symmetric by construction. Therefore |B|| < /B[], B[, = ||B||,, where
N

B = ma. W,
Bl ne{lggN};u n

N

N N
= max E E E |Pierjersernel
ne{l,..,N} E{l 1=

max ‘7”5217””[/
ne{l,..,N} Z Z

s=14"'=0

(om £

j=14=0

N N /N N
< max max E E |rierje] - E |7 ser Trer|
~ J EYARE Y2
1,..,N i€{L,..,N
ne{,,}:ze{,,}.lz —
: )

< |RR/| < |RIZ|R|Z =

30GQufficient condition for uniform integrability is L1y uniform boundedness for any € > 0.
31 Davidson (1994, Theorem 19.11).
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and

T
1
T Zelxt,pcplxt,q — E(0'xt—pp'xt—q) > 0. (98)

t=1

Furthermore, for ||8]| = O (1) and ||¢||. = O (1) we have

T
1
T D 0v o' Tf 50, (99)

t=1

where vy is defined in equation (40).

Proof. Let Tn = T (N) be any non-decreasing integer-valued function of N such that limy_ec Tn = oco. Consider

(oo}

the following two-dimensional array {{mNt,]-'t}fi_oo}N:l,

defined by
_ 1, ’
KNt = 79 Vt—pP Fftfq,
TN

where {F;} denotes an increasing sequence of o-fields (Fy—1 C Fi) such that F; includes all information available at
time ¢ and xn: is measurable with respect to F; for any N € N. Let {{cm}?ifoo};o:l be two-dimensional array
of constants and set cy: = ﬁ for all t € Z and N € N. Using submultiplicative property of matrix norm, and

independence of f; and vy for any t,t’ € Z, we have
. 2
E { [E (—Nt | ]—"tfn>] } < Gn,
CNt

_ 2 2max{0,n—p} G 2¢ / 2
cn%{nen =)@ > 1@ B {[E (Tt | 7)) }}.

£=0

where

16]> = O (1), ||®]| < p by Assumption 8, and ||Z| < /[[Z], =], = O (1) by Assumption 9. Furthermore, since

f;_q is covariance stationary and ||¢'TT"¢| = O (1) (by condition ||¢||, = O (1) and Assumption 12), we have
E{[E(¢Tfy | Fn)]*} = 0(1).
It follows that ¢,, has following properties
so=0() and ¢, — 0 as n — co.

Array {kn¢/cni} is thus uniformly bounded in L2 norm. This proves uniform integrability of array {kn:¢/cnt}.
Furthermore, using Liapunov’s inequality, two-dimensional array {{f-cm, }'Nt}f:ifoo}j\]o:l is L1-mixingale with respect
to constant array {cn:}. Noting that equations (91) and (92) hold, it follows that the array {kn¢, Fi} satisfies

conditions of a mixingale weak law,>>

which implies Z;‘Z\’l KNt “o. Convergence in L; norm implies convergence in
probability. This completes the proof of result (99).
Assumption 11 implies that sequence 8’ (as well as ¢’ @) is deterministic and bounded. Vector of endogenous

variables x; can be written as

xt=a+1"ft+ut.

32 Davidson (1994, Theorem 19.11)
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Process f; is independent of v;. Suppose N, T 2 00 at any rate. Processes {6’v;_,} and {6'v;_,’'vi_q} are ergodic

in mean by Lemma 1 since ||@]| < |[|0]|. = O (1). Furthermore,

T
% > 6'Tf, - 0TE(f) 50,
t=1

and

T
% > 0Tt Tf, - 0'TE (fif_,) T'¢ 50,
t=1

since f; is covariance stationary m x 1 dimensional process with absolute summable autocovariances (f: is ergodic in

mean as well as in variance), and

lo'TT |

I
Q
g
i
=

|errey’]

|

Q
—~

=
=

by Assumption 12, condition||@]|. = O (1) and condition [|¢o||, = O (1). Sum of bounded deterministic process and

independent processes ergodic in mean is a process that is ergodic in mean as well. This completes the proof.

Lemma 3 Let x¢ be generated by model (32), Assumptions 7-12 hold and N,T ERNSNT any rate. Then for any
p,q € {0,1}, for any sequence of non-random matrices of weights W of growing dimension N X m, salisfying

conditions (33)-(34), and for any r € {1,..,my},

Wou,p, 20, (100)

M~

o~
Il
-

W, ,Xwiq >0, (101)

M~

-
Il
—

W v pXit—q 20, (102)

-
Il
—

IR IR
M=

gitqit = 0, (103)

M~

-
Il
-

where the process vy is defined in equation (40), vector giw = (1, g;,t,l,i@t,i@,t,l)’ and gt is defined equation (47).

Proof. Let w, for r € {1,..,m} denote the rt" column vector of matrix W. Noting that H\/Nvm = 0(1) by
granularity condition (33), result
T
N
g > Wi, 50 (104)
t=1

follows directly from Lemma 1, equation (87). This completes the proof of result (100).
Let ¢ be any sequence of non-random N x 1 dimensional vectors of growing dimension such that |||, = O (1).
We have
VN VN
- Z WU pp Xy g = - Zw;ut,pcp' (4Tt g +viyg). (105)
t=1 t=1
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=0 (1) for any r € {1,..,mw} by condition (33), we can use Lemma 1, result (88), which implies

Since H VNW,

ﬂﬂ

T
Z\;'V,T Vi—pp Vg — E (Wivi—pp'vi—g) 0. (106)
Sequence {¢'a} is deterministic and bounded in N, and therefore it follows from Lemma 1, result (87), that

\/7 T

O Z: vi_pp a5 0. (107)

Similarly, Lemma 2 equation (99) implies

ﬂﬂ

T
Z Vi—pp'Tfi_q 2 0. (108)
Results (106), (107) and (108) establish
T
gz WUt p Xi—q 2 0. (109)

Result (101) follows from equation (109) by setting = W, for any [ € {1,..,mw}. Result (102) follows from equation
(109) by setting ¢ = e; where e; is N x 1 dimensional selection vector for the i element.

Finally, the result (103) directly follows from results (100)-(102). This completes the proof. m

Lemma 4 Let x; be generated by model (32), Assumptions 7-12 hold, and N,T ERyN" any rate. Then for any
sequence of non-random matrices of weights W of growing dimension N X m., satisfying conditions (33)-(34),
T

1 /
T > gugii— Ci >0, (110)
t=1

where matriz C; = E (gitg:) and vector gis = (17£;,t—1vi§4/tvi§d/,t—1)/'
Proof. Result (110) directly follows from Lemmas 1, 2 and 3. m

Lemma 5 Let x; be generated by model (32), Assumptions 7-12 hold, and N,T s % at any rate. Then for any
sequence of non-random matrices of weights W of growing dimension N X m,, satisfying conditions (33)-(34), and
for any fizred p > 0,

T
1
LS Wiy B0, (1)

t=1

where the process vy is defined in equation (40). If in addition T/N — 3, with 0 < 3 < 00,

fZW Vi_plir > 0. (112)

Proof. Let Tn = T (N) be any non-decreasing integer-valued function of N such that limy_o Tn = oo and

limy— oo Tn/N = 5 < 00, where s > 0 is not necessarily nonzero. Define

1 ’
KNit = \/TT {W'vt,puit - F (W ’ut,puit)} s (113)
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where the subscript IV is used to emphasize the number of cross section units.”” Let {F;} denote an increasing

sequence of o-fields (F;—1 C Fi) with Ky measurable with respect of F;. First it is established that for any fized

i € N, the vector array {{"&N@'t/CNt,]:t}:iioo};O:i is uniformly integrable, where cn: = 1l _ For p > 0, we can

/NTx

write

E

I

o0 o0 ’
(Z W"i’lut_g_puit> (Z W"i’zut_g_puit> :|

=0 £=0

()| -~
CNt

Nl|o% > W'e'se
£=0

i 2
< Neh WP IEI Y e
£=0

where |[W|? = O (N~1) by condition (33), ||| = O (1) by Assumption 9, and > ;2 H@sz = O (1) by Assumption

8. For p = 0, we have

. / ) >
()] = o (rame s

Nt =1

IN

s 2
N <|W||2 Il + o2 W 121 Y @) + 0 (Nl)) 7
=1

= 0,

where as before ¥;; is N x N symmetric matrix with the element (n, s) equal to F (uituituntust ). Therefore for p > 0,
the two-dimensional vector array {Kknst/cnt} is uniformly bounded in Ly norm. This proves uniform integrability of

{RNit/CNt}~

0 for any n > 0 and any fixed p > 0
EIE (knit | Fin)| = : (114)
TmecntO (1) for n =0 and any fixed p >0

and {{Kknit, Fne}io oo} ., i Li-mixingale with respect to constant array {cy¢}.”" Note that

hm ZcNt— hm Z\/i NHOO\/ =/ < o0,

and

TN 1

Nllnoozcm— i > gy = =0

Therefore for each fixed i € N, each of the m, two-dimensional arrays given by the elements of vector array

33 Note thatW and v;—, change with N, but as before we ommit subscript N here to keep the notation simple.
34 The last equality in equation (114) takes advatage of Liapunov’s inequality. Tm, is mw X 1 dimensional vector
of ones.
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{{nmt, Tt}fi_oo}?:i satisfies conditions of a mixingale weak law®®, which implies

TN
\/% ZW’vt_puit —V TNE (W'vt_puit) I;1> 0.
N =1

But

H\/TNE [W'Ut,puit] ‘ =VIN ||E (W'utuit)Hc =+VTNnO <%) — 0,

since imy—oo Tn/N = 7 < oo. Convergence in L; norm implies convergence in probability. This completes the
proof of result (112).

Result (111) is established in a very similar fashion. Define new vector array qni: = ﬁl{]\]it where ki is array
defined in (113) and ¢ € N is fixed. Let Tv = T (V) be any non-decreasing integer-valued function of N such that such
that limy_0o Tn = oco. Notice that for any fixed i € N, vector array {{\/ﬁqmt/cm,ft}zim}?zi is uniformly
integrable because {{nNit/cNt,ft};'ifoo};o:i is uniformly integrable. Furthermore, {{qutvft}?ifoo}j\;o:i is Lq-

mixingale with respect to the constant array ﬁCNt} since {{”””Nih]:t}zfoo}jvo:i is L1 mixingale with respect

to the constant array {cn¢}. Note that

X X1 1
lim cne = lim = lim — =0,
2 IR T A 2 R T A TR

and

Tn 1 2 Tn 1 2 1
lim —c = lim = lim —— =0.
5 (o) - 3 () -

Therefore for any fixed i € N, a mixingale weak law®® implies

TN

S awie 0 as N — co. (115)

t=1
Since also

FE (WI'Ut—puit) =0 (N_l) ’

it follows

T

1

T Z W,’Utfpuit L—1> 0,
t=1

as N, T Iy 00 at any rate. Convergence in L; norm implies convergence in probability. This completes the proof of

result (111). m

Lemma 6 Let x; be generated by model (32), Assumptions 7-12 hold and N, T 7y oo such that T/N — 3, with
0 < 5 < oco. Then for any sequence of non-random matrices of weights W of growing dimension N X m., satisfying

conditions (33)-(34), we have,

35 See Davidson (1994, Theorem 19.11).
#6See Davidson (1994, Theorem 19.11).
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a) under Assumption 13,

T
1 -1 1 - D

Ci 2 — E gitUit — N(O,Ikl) B (116)
Tii vT i

g — !
where C; = E (8:18;;) and it = (1,5;’t71,ft’1“’w7ft’,1r’w) .

b) under Assumption 14,

T
1 1 D

n1)i2 E Vit—1Uit — N(O,Ihz) ’ (117)
U”'\/T =1 ' ‘

where matriz Qi = E (vieviy) and vector vig = S;> 02 dlu,_,.

Proof. Let a be any k; x 1 dimensional vector such that ||al| =1 and define

1, 1
— 25
knt = ————a C, >,
Tnoii

where Ty = T (N) is any non-decreasing integer-valued function of N such that imy e Tn = 00 and limy o0 Tn /N =
2 < 00, where 0 < 5 < co. Array {kn¢, Fi} is a stationary martingale difference array.’” Lemmas 1 and 2 imply

1
a’'C; 2g;; is ergodic in variance, in particular

Tn

1 P _
T Za Ci qugnci
TN t=1

1
5. D
2a— 1.

1
~ . . J~— S~ . .. .
gi+ and u;: are independent and the fourth moments of u; are finite. Therefore a’C, 2 g;¢ui: is ergodic in variance

and

Tn
> ke B L (118)
t=1

4
Furthermore, E (agla'C;l/zgnuit) = O (1) and therefore

N —oo

Tn
lim > F (ki) = 0.
t=1
Using Liapunov’s theorem (Davidson, 1994, Theorem 23.11), Lindeberg condition®® holds, which in turn implies
max |kne| 2 0as N — oo. (119)

1<t<Ty

Results (118), (119) and the martingale difference array central limit theorem (Davidson, 1994, Theorem 24.3)

establish
TN 1 , I b
kne = —=——a'C; 2 » Ziuir — N (0, I, 120
; Nt \/TTVU“- i ;gt t ( ) kl) ( )
Since equation (120) holds for any k; x 1 dimensional vector a such that ||a|| = 1, result (116) directly follows from

equation (120) and Davidson (1994, Theorem 25.6).
1

1 0" 2
a'Q, 2 vi_1ui,

VINTii

3T As before, let {F:} denote an increasing sequence of o-fields (Fi—1 C F¢) with xn: measurable with respect of
Fi.
#¥See Davidson (1994, Condition 23.17).

Result (117) can be established in the same way as the result (116), but this time we set ke =
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where a is any h; x 1 dimensional vector such that ||al| =1. =

Lemma 7 Let x; be generated by model (32), and suppose Assumptions 7-12 hold and N,T Iy 0 at any rate. Then

for any arbitrary matriz of weights W satisfying conditions (33)-(84), and for any p,q € {0,1} :

1 — 1
=S Bwip=0p (= ). 121
T po W,t—p D <\/N) ( )
T
1 _ 1
T ;:1 UW,t*Pftl—q = 0p ( N) s (122)
T
1 . 1
T > Vii—pDwi—g = 0p <\/7N> . (123)
t=1
1 — 1
—§ Tw.t—p U} = — 124
T pt Vw,t P’UW,tfq Op <\/ﬁ) ’ ( )
TiQ
T =o0p(1). (125)
Furthermore,
HQ ,,QQ 1
7 AT TeluE) (126)
Z.H Z.Q 1
i _ i A 12
20 (). (127)
H'H Q'Q 1
H/ i0 ! io 1
T“ = A’Q; +0p (—N) , (129)
where
TT;'L = (Vio, Vit -y Vir—1) (130)
X hg

vie = S D eeo ®“u,_,, matrices H and Z; are defined below equation (53), and matrices Q, F and A are defined in

equations (54)-(55).

Proof. Result (121) follows directly from equation (87) of Lemma 1 since the spectral norm of any column vector
of the matrix W is O (N*%). Result (122) follows from result (121) by noting that f; is independently distributed
of Dw,: and all elements of the variance matrix of f; are finite. Furthermore, since (by Lemma 1) & Shvie 20,

equation (125) follows. Results (123) and (124) follows directly from equation (88) of Lemma 1 by noting that

I~ — 1
NE (U’L,t*PvW,t—q) =0 (ﬁ) (131)
as well as®
SN [ — 1
NFE (’UW,t—p'UW,tfq) =0 <\/7N> . (132)

In order to prove equations (126)-(129), first note that the row ¢ of the matrix H — QA is (O,E'VVt,ﬁ'vV’t,l).

39Results (131) and (132) are straightforward to establish by taking the row norm and by noting that the granularity
conditions (33)-(34) imply |[W||, = O (N7").
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Using results (121)-(124), we have

0
, T
w _ %; e | (1L £ £, )| =0 (\/Lﬁ) : (133)
L\ Dw-1
r !
’ T 0
M = %; éi,t—l Uwit = 0Op (\/Lﬁ) ) (134)
VW,t—1
- -
'(H-QA) - |
H (H- 1 Xwit 1
T T ; T vw Op (x/ﬁ) ’ (135)
Vw,t—1
- b
, ’ 0 0
(H QA)T(H Q4) = %; Uwit Vwi = 0p (%) ) (136)
Uw,t—1 Vw,t—1

Equations (133)-(134) establish results (126) and (127). Note that

HH  H(H-QA)  H(QA)
T T + T
_ HH-QA) H-QA)Q Q'Q
= T + T A+A T A,
. QQ 1
= A T A+Op (ﬁ) B

where the last equality uses equations (133) and (135). This completes the proof of result (128).

Equation (115) (see proof or Lemma 5) implies

T
1 _ _ P

E Ow,t—pit — E (Ow,t—puit) — 0,
t=1

el

as N, T I o0 at any rate. Result (129) follows by noting that vV NFE (Tw.i—puir) = O (N_%). This completes the

proof. m

Lemma 8 Let x: be generated by model (32), suppose Assumptions 7-12, 14 hold, and N,T Iy 0 at any rate. Then

for any arbitrary matriz of weights W satisfying conditions (33)-(34) and Assumption 14, we have

!
QTQ q,, (137)
Q. is nonsingular, and
YiX;
’T -9, 20, (138)
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where
1 0 0

QQ - 0 Ff‘ (O) I‘f (1) ’
0 TI'¢(1) T:(0)

T: () = E(£if_,), Qui = E (viv}), matriz Q is defined in equation (54), and matriz X; = (Vio, Vi1, ..., Vir—1)' .

Proof. Assumption 11 implies matrix €, is nonsingular. Result (137) directly follows from the ergodicity properties
of the covariance stationary time-series process f;.
Consider now asymptotics N, T EN oo at any rate. Lemma 1 implies that h; X 1 dimensional vector v;; = Sivy

is ergodic in variance, in particular % 2;1,;1 SivwiS; — E (Siv:v;S;) 2, 0.1 This completes the proof. m

Lemma 9 Let x; be generated by model (32), suppose Assumptions 7-12 and 14 hold, and N,T Iy o at any rate.

Then for any arbitrary matriz of weights W satisfying conditions (33)-(34) and Assumption 14, we have

Z:MpyZ; Z:MoZ; 1
- - TQ + o (ﬁ) , (139)
/ .
% — Qi 2o, (140)
Z:MyQ T
VT ” ( N> ’ "
ZgMHuio

VT

T;MQuio T
7T +op<,/N ) (142)

where Q; is defined in Assumption 14, Mg = Ip — H(H'H)Jr H', matrices H and Z; are defined below equation

(58), matrices Q and F are defined in equation (54), and matriz X; = (Vio, Vi1, ..., Vi,r—1) .

Proof.
Z'MyZ; 1Z.Z; Z'H /HH\'HZ;
T = ~ T T (143)
Results (127)-(128) of Lemma 7 imply
ZH (WH\"WZ, Z QQ ,\" .,/ Q% .
- (T) = A(A TA) A= +op () (144)
Using definition of the Moore-Penrose inverse, it follows
’ l + ’ ’
( 420 A) ( £Q0Q A) ( A0 A) _ ( #QQ A) . (145)

’ -1 ’ -1 y
Multiply equation (145) by (Q Q) (AA’)"' A from the left and by A’ (AA’) ™! ( QTQ) from the right to obtain®!

’ + ’ -1
A(A’%A) A/:(%> . (146)

T

10)Si]|, = O (1) by Assumption 7.

T

“INote that plz’mTﬁoo%Q/Q is nonsingular by Lemma 8, equation (137). AA’ is nonsingular, since matrix A has

full row-rank by Assumption 14.
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Equations (146) and (144) imply

T T

ZH (HH\"H'Z, ZQ [(QQ)\ 'QZ
T(T) (T) T—I—OI,(L).

Result (139) follows from equations (147) and (143).
System (32) implies
Z;, = TO(;SZ‘ +F (—1) I‘;SZ + ;.

Since Q =[7,F,F (—1)], it follows

ZiMoZi _ TMoY: _ YiY:  YiQ (QQ\ ™' QY:
T T T T \T T

Using equations (125), (137) and (138), result (140) follows directly from (149).
Results (126)-(128) of Lemma 7 imply

ZH (HH\THQ ZQ QQ,\",.QQ
T(T)TfTA(A A)A

Substituting equation (146), it follows

ZH /(HH\THQ ZQ/QQ\ 'QQ
- () TR ()

Equation (151) implies

ZMyQ _ZMeQ ([T _ ([T
JT v 7\ )TV )

This completes the proof of result (141).
Results (127)-(129) of Lemma 7 imply

ZH (HH\ Hu., Z,Q QQ \" . Qu .
: <T> e = TA(A—A) A +op(7),

Substituting equation (146), it follows

VN

ZH /(HH\"HQ Z/Q /QQ)\ ' Qup
T(T)T_T(T) T+OP(L)'

Noting that Mg (Ta;S; + FI';S;) = 0 since Q = [7,F,F (—1)], equations (152) and (148) imply

ZMpyuio Z:Mouio T

LiV2HWo 4 ViQUio el
= + op ,

VT VT N

B ’r;MQuiOH T
= 2o ,/N ,

This completes the proof. m

(147)

(148)

(149)

(150)

(151)

(152)

Lemma 10 Let x¢ be generated by model (32), and suppose Assumptions 7-12 and 14 hold, and N, T 7y 00 at any
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rate. Then for any arbitrary matriz of weights W satisfying conditions (33)-(34) and Assumption 14, we have

EMubo) (ﬁ) , (153)

Z'-MHuio 'I"-ul-o T
SRR - R Lo (4= ] 40, (1), 154

where matrices Mg ,and Z; are defined below equation (53), X; = (vio,Vi1,...,Vir—1) and vector {,(—1) =

(Cior oo Cirn)

Proof.
!
Z:¢. (-1 1 <
CZ’I(‘ ) = TZ Xi,t—1 <¢;bzq)eutzl> :| ’
t=1 £=0
H'¢, (-1) 1 — Xwt N /
. = =3 By D P
t=1 Xw,t—1 £=0

@3], = O (N~") by Assumption 7, therefore result (153) directly follows from equations (134) and (135).

YiMoue _ Yiwe  YiQ (Q'Q)‘l Q'uio
vT v T \T VT’
+ 0, (1), (155)

I
Tiul'o

VT

where L\/"Tm = Oy (1), plimr—00%Q'Q is nonsingular by Lemma 8, and T%Q = 0p (1) by Lemma 7, equation (125).

Substituting (155) into equation (142) implies result (154). This completes the proof. m

Proof of Theorem 1.

a) Substituting for z;+ in equation (49) yields
1 -1 1 1
- = | = 8 = itqit + — itUit | - 1
R EO T B ES TR iy (130

With N, T ERISE™ any order, Lemma 5 yields*?

T
1
T Z gittit — 0. (157)
t=1
Also using Lemmas 3 and 4 we have
T
1
T D gitdie = 0, (158)
t=1
and
1
7 >_gugi — Civ 0, (159)
t=1

T P . . . . . . .
42% thl Zjt—1us¢ — 0 since xj; is ergodic in mean by Lemma 2 and ws is independent of z;;—; for any j €

{1,..,N} and any N € N. Furthermore, using similar arguments, + S fru 2 0.
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respectively. Assumption 13 postulates that the matrix Ciy is invertible for any N > Np and ||C;y|| is

bounded in N. It follows from equation (159) that

T -1
1 _
(T Z gitg;t> - Ciz\} 5 o0. (160)
t=1

Result 7; — m; = 0 directly follows from equations (157), (158) and (160).

b) Multiplying equation (156) by VT yields
_ 1 o 1 <
VT (& — ;) ( Z gzt%n) <\/T 15:21 gitGit + Wes ; git“it) . (161)
With N, T 7, 50 such that T/N — 5 < oo, Lemma 3 can be used to show that
T
—= > gugu > 0. (162)

Since HCZ_A}H = O (1), equations (160) and (162) now yield

(7

T -1 T

p
E gitg; — E gitqit — 0. (163)
t=1 t) VT t=1

'ﬂ \

Lemma 5 establishes

T
Z Wt pliit — 0 for p € {0,1}. (164)

3\

It follows from equation (164) that

~

T Z (it — 8it) uit — 0, (165)

— — !
where g;s = (1,5;7t_1,ft’1“’w, ft',ll"lw) . Lemma 6 establishes that

=

T
1 _
e C; 7; S = N (0,11, (166)

Equations (160), (163), (165) and (166) imply result (50).
¢) Lemma 4 establishes % Zthl gitgl; — Cin = 0. The estimated residuals from auxiliary regression (48) are
equal to Ui = uit — gi; (Wi — ™), which implies
T

T T
% Za'?t = % Zuft -2 (7?1 - 7Tz Z it Uit + i — 7"1 < Zg%gﬁ) A' - 771) ) (167)
t=1

where + Zthl uy — o N 20, ® —m: 5 0 is established in part (a) of this proof, % Ethl gig —Cin 20

is established in Lemma 4, and + Zthl gittir — 0 is established in equation (157). This completes the proof.
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Proof of Theorem 2. Vector x;, can be written, using system (32), as
Xio =T (ai — 6;8;(1) +7Z;6; + Ff)’i - F (—1) I‘/Siéi =+ C,L (—1) + Wo, (168)

where ¢; (—1) = ((i0, - CLT_I)'. Substituting equation (168) into the partition least squares formula (53) and noting

that by Lemma 9,

JT N

Z:Mp (uio + ¢, (—1)) T
o (D]

Z:MuQ = 0, ( T) ’ (169)

it follows

V(5 5) = (M7

Lemma 9 also establishes that

Z/MuZ;

T —Qu 20,as N, T Iy 0 at any rate, (171)

where €.,; = E (vitVvj;) is nonsingular by Assumption 14.

Consider now asymptotics N, T 2, 50 such that T/N — 3 < co. Lemma 10 establishes

ZMuG, (1) »
S (172)

Z/-MHllio Tl-llio T
U = L +op /= | +o0p(1), 173

where Y; = (v, ...,v,‘,Tfl)'. Also from Lemma 6

and

T
1 -1 D
791”42 E Vit—1Uit — N (0, Ihi) . (174)
0iVT t=1

The desired result (56) now follows from (170)-(174). m
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