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Abstract

Conditional heteroskedasticity is an important feature of many macroeconomic and financial time
series. Standard residual-based bootstrap procedures for dynamic regression models treat the re-
gression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity.
We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for
stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedas-
ticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design
wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be
more accurate in small samples than the conventional large-sample approximation based on robust
standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors
may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical ap-
plications the proposed robust bootstrap procedures should routinely replace conventional bootstrap
procedures based on the i.i.d. error assumption.

JEL: C15, C22, C52
KEYWORDS: Wild bootstrap; Pairwise bootstrap; Robust inference; GARCH; Stochastic volatil-

ity.
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NON-TECHNICAL SUMMARY

It is well known that there is evidence of conditional heteroskedasticity (also known as volatility
clustering) in the residuals of many estimated dynamic regression models in finance and in
macroeconomics. This evidence is particularly strong for regressions involving monthly, weekly and
daily data. Standard residual-based bootstrap methods of inference for autoregressions treat the error
term as independent and identically distributed (i.i.d.) and are invalidated by conditional
heteroskedasticity. In this paper, we analyze two main proposals for dealing with conditional
heteroskedasticity of unknown form in autoregressions.

The first proposal is very easy to implement and involves an application of the wild bootstrap
(WB) to the residuals of the dynamic regression model. The WB method allows for regression errors
that follow martingale difference sequences (m.d.s.) with possible conditional heteroskedasticity. We
investigate both the fixed-design and the recursive-design implementation of the WB for
autoregressions. We prove their first-order asymptotic validity for the autoregressive parameters (and
smooth functions thereof) under fairly general conditions including, for example, many stationary
ARCH, GARCH and stochastic volatility error processes.

There are several fundamental differences between this paper and earlier work on the WB in
regression models. First, existing theoretical work has largely focused on the classical linear
regression model (see Davidson and Flachaire 2000). Second, Davidson and Flachaire (2000) establish
the validity of the WB in the presence of unconditional heteroskedasticity in cross-sections, whereas
we focus on conditional heteroskedasticity in time series. Third, much of the earlier work has focused
on bootstrapping models restricted under the null hypothesis of a test, whereas we focus on the
construction of bootstrap confidence intervals from unrestricted regression models (see Davidson and
Flachaire 2000, Godfrey and Orme 2001).

The work most closely related to ours is Kreiss (1997). Kreiss established the asymptotic
validity of a fixed-design WB for stationary autoregressions with known finite lag order when the
error term exhibits a specific form of conditional heteroskedasticity. We provide a generalization of
this result to m.d.s. errors with possible conditional heteroskedasticity of unknown form. Our results
cover as special cases the N-GARCH, t-GARCH and asymmetric GARCH models, as well as
stochastic volatility models. Kreiss (1997) also proposed a recursive-design WB, under the name of
“modified wild bootstrap”, but he did not establish the consistency of this bootstrap proposal for
autoregressive processes with conditional heteroskedasticity. We prove the first-order asymptotic
validity of the recursive-design WB for finite-order autoregressions with m.d.s. errors subject to
possible conditional heteroskedasticity of unknown form. The proof holds under slightly stronger
assumptions than the proof for the fixed-design WB.

Tentative simulation evidence shows that the recursive-design WB scheme works well in small

samples for a wide range of models of conditional heteroskedasticity. In contrast, conventional
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residual-based resampling schemes based on the i.i.d. assumption may be very inaccurate in the
presence of conditional heteroskedasticity. Moreover, the recursive-design WB method works equally
well in the i.i.d. error case. The recursive-design WB method is typically more accurate in small
samples than the fixed-design WB method. It also tends to be more accurate than the Gaussian large-
sample approximation based on robust standard errors.

The second proposal for dealing with conditional heteroskedasticity of unknown form involves
the pairwise resampling of the observations. This method was originally suggested by Freedman
(1981) for cross-sectional models. We establish the asymptotic validity of this method in the
autoregressive context and compare its performance to that of the fixed-design and of the recursive-
design WB. The pairwise bootstrap is less efficient than the residual-based WB, but - like the fixed-
design WB - it remains valid for a broader range of GARCH processes than the recursive-design WB,
including EGARCH, AGARCH and GJR-GARCH processes, which have been proposed specifically
to capture asymmetric responses to shocks in asset returns (see, e.g., Engle and Ng (1993) for a
review). We find in Monte Carlo simulations that the pairwise bootstrap is typically more accurate
than the fixed-design WB method, but in small samples tends to be somewhat less accurate than the
recursive-design WB when the data are persistent. For large samples these differences vanish, and the
pairwise bootstrap is as accurate as the recursive-design WB.

The theoretical and simulation results in this paper suggest that no single method of dealing
with conditional heteroskedasticity of unknown form will be optimal in all cases. We conclude that
the recursive-design WB should replace conventional recursive-design i.i.d. bootstrap methods in
many standard applications in empirical macroeconomics. This method performs equally well,
whether the error term is i.i.d. or conditionally heteroskedastic, but it lacks a theoretical justification
for some forms of GARCH that have figured prominently in the literature on high-frequency returns.
When sample sizes are at least moderately large and the possibility of asymmetric forms of GARCH is
a practical concern, the pairwise bootstrap provides a suitable alternative.

A third proposal for dealing with conditional heteroskedasticity of unknown form is the
resampling of blocks of autoregressive residuals (see, e.g., Berkowitz, Birgean and Kilian 2000). No
formal theoretical results exist that would justify such a bootstrap proposal. We do not consider this
proposal for two reasons. First, in the context of a well-specified parametric model this proposal
involves a loss of efficiency relative to the WB because it allows for serial correlation in the error term
in addition to conditional heteroskedasticity. Second, the residual-based block bootstrap requires the
choice of an additional tuning parameter in the form of the block size. In practice, results may be
sensitive to the choice of block size. Although there are data-dependent rules for block size selection,
these procedures are very computationally intensive and little is known about their accuracy in small
samples. In contrast, the methods we propose are no more computationally burdensome than the

standard residual-based algorithm and very easy to implement.
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1. Introduction

It is well known that there is evidence of conditional heteroskedasticity in the residuals of many estimated
dynamic regression models in finance and in macroeconomics. This evidence is particularly strong for
regressions involving monthly, weekly and daily data. Standard residual-based bootstrap methods of
inference for autoregressions treat the error term as independent and identically distributed (i.i.d.) and
are invalidated by conditional heteroskedasticity. In this paper, we analyze two main proposals for
dealing with conditional heteroskedasticity of unknown form in autoregressions.

The first proposal is very easy to implement and involves an application of the wild bootstrap
(WB) to the residuals of the dynamic regression model. The WB method allows for regression errors
that follow martingale difference sequences (m.d.s.) with possible conditional heteroskedasticity. We
investigate both the fixed-design and the recursive-design implementation of the WB for autoregressions.
We prove their first-order asymptotic validity for the autoregressive parameters (and smooth functions
thereof) under fairly general conditions including, for example, many stationary ARCH, GARCH and
stochastic volatility error processes.

There are several fundamental differences between this paper and earlier work on the WB in re-
gression models. First, existing theoretical work has largely focused on the classical linear regression
model (see Davidson and Flachaire 2000). Second, Davidson and Flachaire (2000) establish the validity
of the WB in the presence of unconditional heteroskedasticity in cross-sections, whereas we focus on
conditional heteroskedasticity in time series. Third, much of the earlier work has focused on boot-
strapping models restricted under the null hypothesis of a test, whereas we focus on the construction of
bootstrap confidence intervals from unrestricted regression models (see Davidson and Flachaire 2000,
Godfrey and Orme 2001).

The work most closely related to ours is Kreiss (1997). Kreiss established the asymptotic validity
of a fixed-design WB for stationary autoregressions with known finite lag order when the error term
exhibits a specific form of conditional heteroskedasticity. We provide a generalization of this result to
m.d.s. errors with possible conditional heteroskedasticity of unknown form. Our results cover as special

cases the N-GARCH, t-GARCH and asymmetric GARCH models, as well as stochastic volatility models.
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Kreiss (1997) also proposed a recursive-design WB, under the name of “modified wild bootstrap”, but he
did not establish the consistency of this bootstrap proposal for autoregressive processes with conditional
heteroskedasticity. We prove the first-order asymptotic validity of the recursive-design WB for finite-
order autoregressions with m.d.s. errors subject to possible conditional heteroskedasticity of unknown
form. The proof holds under slightly stronger assumptions than the proof for the fixed-design WB.

Tentative simulation evidence shows that the recursive-design WB scheme works well in small sam-
ples for a wide range of models of conditional heteroskedasticity. In contrast, conventional residual-
based resampling schemes based on the i.i.d. assumption may be very inaccurate in the presence of
conditional heteroskedasticity. Moreover, the recursive-design WB method works equally well in the
i.i.d. error case. The recursive-design WB method is typically more accurate in small samples than
the fixed-design WB method. It also tends to be more accurate than the Gaussian large-sample
approximation based on robust standard errors.

The second proposal for dealing with conditional heteroskedasticity of unknown form involves the
pairwise resampling of the observations. This method was originally suggested by Freedman (1981) for
cross-sectional models. We establish the asymptotic validity of this method in the autoregressive context
and compare its performance to that of the fixed-design and of the recursive-design WB. The pairwise
bootstrap is less efficient than the residual-based WB, but - like the fixed-design WB - it remains valid
for a broader range of GARCH processes than the recursive-design WB, including EGARCH, AGARCH
and GJR-GARCH processes, which have been proposed specifically to capture asymmetric responses
to shocks in asset returns (see, e.g., Engle and Ng (1993) for a review). We find in Monte Carlo
simulations that the pairwise bootstrap is typically more accurate than the fixed-design WB method,
but in small samples tends to be somewhat less accurate than the recursive-design WB when the data
are persistent. For large samples these differences vanish, and the pairwise bootstrap is as accurate as
the recursive-design WB.

The theoretical and simulation results in this paper suggest that no single method of dealing with
conditional heteroskedasticity of unknown form will be optimal in all cases. We conclude that the

recursive-design WB should replace conventional recursive-design i.i.d. bootstrap methods in many
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standard applications in empirical macroeconomics. This method performs equally well, whether the
error term is i.i.d. or conditionally heteroskedastic, but it lacks a theoretical justification for some forms
of GARCH that have figured prominently in the literature on high-frequency returns. When sample
sizes are at least moderately large and the possibility of asymmetric forms of GARCH is a practical
concern, the pairwise bootstrap provides a suitable alternative.

A third proposal for dealing with conditional heteroskedasticity of unknown form is the resampling of
blocks of autoregressive residuals (see, e.g., Berkowitz, Birgean and Kilian 2000). No formal theoretical
results exist that would justify such a bootstrap proposal. We do not consider this proposal for two
reasons. First, in the context of a well-specified parametric model this proposal involves a loss of
efficiency relative to the WB because it allows for serial correlation in the error term in addition to
conditional heteroskedasticity. Second, the residual-based block bootstrap requires the choice of an
additional tuning parameter in the form of the block size. In practice, results may be sensitive to the
choice of block size. Although there are data-dependent rules for block size selection, these procedures
are very computationally intensive and little is known about their accuracy in small samples. In
contrast, the methods we propose are no more computationally burdensome than the standard residual-
based algorithm and very easy to implement.

The paper is organized as follows. In section 2 we provide some empirical and theoretical motivation
for the use of the m.d.s. assumption in resampling and highlight the limitations of existing bootstrap
and asymptotic methods of inference for dynamic regression models such as autoregressions. In section
3 we describe the bootstrap algorithms and state our main theoretical results. Details of the proofs
are relegated to the appendix. In section 4, we provide some tentative simulation evidence for the

small-sample performance of alternative bootstrap proposals. We conclude in section 5.

2. Evidence Against the Assumption of i.i.d. Errors

Standard residual-based bootstrap methods of inference for dynamic regression models treat the error
term as i.i.d. The i.i.d. assumption does not follow naturally from economic models. Nevertheless, in
many cases it has proved convenient for theoretical purposes to treat the error term of dynamic regression

models as i.i.d. This would be of little concern if actual data were well represented by models with
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i.i.d. errors. Unfortunately, this is not the case in many empirical studies. Two illustrative examples
are asset return regressions in empirical finance and autoregressions in empirical macroeconomics.

Dating back to work by Fama and French (1988), there has been great interest in testing the null
hypothesis of uncorrelated stock returns. It is common to use nonparametric bootstrap tests of this
hypothesis that impose the much stronger assumption of i.i.d. returns (see, e.g., Goetzmann and Jorion
1993). Figure la shows clear evidence of volatility clustering in monthly value-weighted CRSP returns
for 1927.1-2000.12 that invalidates that assumption. This conclusion is also supported by a formal LM
test of the null of conditional homoskedasticity in Table 1 (see Engle 1982). A related problem arises
in the international finance literature. The random walk hypothesis due to Meese and Rogoff (1983)
implies that changes in exchange rates should be unpredictable. It is standard to employ bootstrap
tests of this hypothesis. In actuality, however, these tests impose the much more stringent assumption
of i.i.d. returns (see Mark 1995, Kilian 1999). The evidence in Figure 1b and Table 1 (based on the
DM-U.S. dollar exchange rate for 1973.1-2001.10) suggests that this assumption is highly questionable,
at least for exchange returns at monthly or higher frequency.

An alternative approach in empirical finance involves the use of finite-sample critical values based
on fitted VAR models for returns and a set of additional predictors. This approach may be interpreted
as a parametric bootstrap approach. Often, however, these VAR models ignore evidence of conditional
heteroskedasticity in the VAR errors (see e.g., Goetzmann and Jorion 1995). In principle, we may
modify the bootstrap approach by postulating a parametric model of conditional heteroskedasticity.
For example, Hodrick (1992) and Bekaert and Hodrick (2001) postulate a VAR model with condition-
ally Gaussian GARCH(1,1) errors. Similarly, Lamoureux and Lastrapes (1990) augment the return
regression by a parametric GARCH(1,1) model. This approach is unlikely to solve the problem. Even
in the unlikely case that we could agree that the class of GARCH models is appropriate for a given
data set, in practice the precise form of the GARCH model will be unknown and different specifications
may yield different results (see Wolf 2000). The same holds for the class of stochastic volatility models.
This fact points to the need for a nonparametric treatment of conditional heteroskedasticity in dynamic

regression models.
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This need is reinforced by the fact that it is exceedingly difficult to obtain reliable numerical estimates
of multivariate GARCH models. In practice, researchers often impose additional ad hoc restrictions on
the covariance structure of the model (see, e.g., Bollerslev, Engle and Wooldridge 1988, Bollerslev 1990,
Bekaert et. al. 1997). These restrictions have no theoretical justification (also see Ledoit, Santa-Clara
and Wolf 2001). Finally, we note that even with such restrictions it seems next to impossible to model
conditional heteroskedasticity in high-dimensional VAR models unless the sample size is very large.
This problem is most apparent in macroeconomic applications with many variables.

Whereas the failure of the i.i.d. assumption is well-documented in empirical finance, it is less well
known that many monthly macroeconomic variables also exhibit strong conditional heteroskedasticity.
The workhorse model of empirical macroeconomics is the linear autoregression. Figure 2 plots the
squared residuals of six univariate monthly autoregressive models (for the growth rate of industrial
output, M1 growth, CPI inflation, the real 3-month T-Bill rate, the nominal Federal Funds rate and the
percent change in the price of oil). The data source is FRED, the sample period 1959.1-2001.8, and the
lag orders of the AR models have been selected by the AIC. Figure 2 shows strong evidence of departures
from conditional homoskedasticity. Formal LM tests of the null hypothesis of no ARCH in Table 1 also
provide overwhelming evidence against the i.i.d. assumption. The evidence in Table 1 is important
because many methods of inference developed for smooth functions of autoregressive parameters (such
as impulse responses) do not allow for conditional heteroskedasticity. For example, standard residual-
based bootstrap methods for autoregressions rely on the i.i.d. error assumption and are invalid in the
presence of conditional heteroskedasticity, as we will show in the next section. Similarly, the grid
bootstrap of Hansen (1999) is based on the assumption of an autoregression with i.i.d. errors.

It may seem that standard asymptotic methods would be less restrictive, but this is not necessarily
the case. For example, the closed-form solutions for the asymptotic normal approximation proposed by
Liitkepohl (1990) also rely on the assumption of conditional homoskedasticity. They are based on least-
squares estimates of the variance of the estimator that are inconsistent in the presence of conditional
heteroskedasticity. Similarly, Wright’s (2000) local-to-unity intervals for AR(p) impulse responses rely

on the assumption of i.i.d. innovations. Although these methods could presumably be modified to allow

ECB «Working Paper No 196 « November 2002 |1



for conditional heteroskedasticity, current implementations of these methods are invalid in the presence
of conditional heteroskedasticity. Other papers make the even stronger assumption of Gaussian i.i.d.
errors, including Wright (2001), Andrews (1993) and Andrews and Chen (1994). Although the latter
two papers provide some simulation evidence that their method is fairly robust to non-Gaussian i.i.d.
innovations, they do not consider conditionally heteroskedastic errors. Finally, although this paper
does not cover the Bayesian approach, it should be noted that the popular Bayesian Monte Carlo
integration method for forming Bayesian error bands for VAR impulse responses also assumes that the
VAR innovations are i.i.d. (see Doan 1990, Sims and Zha 1999).

In this paper we study several easy-to-implement bootstrap methods that allow inference in autore-
gressions with possible conditional heteroskedasticity of unknown form. Unlike the standard residual-
based bootstrap for models with i.i.d. innovations these bootstrap methods remain valid under the
much weaker assumption of m.d.s. innovations, and they do not require the researcher to take a stand
on the existence or specific form of conditional heteroskedasticity. For expository purposes we focus on
univariate autoregressive models. Analogous results for the multivariate case are possible at the cost

of additional notation.

3. Theory

Let (Q, F, P) be a probability space and {F;} a sequence of increasing o-fields of F. The sequence of
martingale differences {e, t € Z} is defined on (2, F, P), where each ¢, is assumed to be measurable
with respect to F;. We observe a sample of data {y_pi1,...,%0,Y1,...,Yn} from the following data

generating process for the time series y,

¢ (L) ye = e, (3.1)
where ¢ (L) =1 — ¢ L — o L% — ... — ¢,LP, ¢, # 0, is assumed to have all roots outside the unit circle.
¢ = (ngl, e gzﬁp), is the parameter of interest, which we estimate by ordinary least squares (OLS) using

observations 1 through n:

n -1 n
o= <nzyy) S Vi
t=1 t=1
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where Y;—1 = (y1—1,- - - ,yt_p)/. In this paper we focus on bootstrap confidence intervals for ¢ that are
robust to the presence of conditional heteroskedasticity of unknown form in the innovations {e;}. More

specifically, we assume the following condition:

Assumption A

(i) E (e¢|Fi—1) = 0, almost surely, where F;_1 = o (€4—1,€—2, . ..) is the o-field generated by {e;_1,&1—2,...}.
(i) E(e7) =0 < o0.

(ifi) limpoon ™' Y1 E (e7|Fi—1) = 0> > 0 in probability.

(iv) E (sfst,Tst,s) = 0*7,; is uniformly bounded for all t,r > 1, s > 1; 7., >a for some a> 0 for all

T
(v) limpoon™ Y0 etper—sE (5?|.7—'t_1) = 0'47',,.75 in probability for any » > 1, s > 1.
(vi) E|eg|* is uniformly bounded, for some r > 1.

Assumption A replaces the usual i.i.d. assumption on the errors {e;} by the broader martingale
difference sequence assumption. In particular, Assumption A does not impose conditional homoskedas-
ticity on the sequence {e;}, which need not be strictly stationary (although it is covariance station-
ary). Assumption A covers a variety of conditionally heteroskedastic models such as ARCH, GARCH,
EGARCH and stochastic volatility models (see, e.g. Deo (2000), who shows that a stronger version
of Assumption A is satisfied for stochastic volatility and GARCH models). Assumptions (iv) and (v)
restrict the fourth order cumulants of &;.

The following theorem gives the asymptotic distribution of the OLS estimator (Ab,n for the parameter
vector ¢ under the martingale difference sequence Assumption A. This result could be obtained as a
special case of Kuersteiner’s (2001) Theorem 3.4, which gives the asymptotic distribution of efficient
instrumental variables estimators in the context of ARMA models with martingale difference sequence
errors. In particular, in addition to the martingale difference sequence assumption, his Assumption

A1 assumes {&;} to be stationary ergodic, and it imposes a summability condition on the fourth order
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cumulants. Here, we use Assumption A, which relaxes the stationarity and ergodicity assumptions
and the summability condition. We use Kuersteiner’s (2001) notation to characterize the asymptotic
covariance matrix of ¢,,. Using ¢! (L) = >0 zbij, we let b; = (¢j_1, cey ¢j_p)/ with ¥y = 1 and
¢; =0 for j <0. The coefficients 1; satisfy the recursion ¢ — 191 —... —¢pp,_, =0 forall s >0

and 1y = 1. We let = denote convergence in distribution throughout.

Theorem 3.1. Under Assumption A, \/n (g?)n - gb) = N (0,C), where

C = A'BA™Y

A = 02ijb; = o? Z¢j¢j+|k4|
j=1 Jj=0

kJl=1,....p

B = ¢t Z Z bib;-ﬂ,j =o* Z Z Vb Tigik+j

=1 j=1 =0 7=0 ki=1,..p

The asymptotic covariance of &)n is of the traditional “sandwich” form, where
A=F (n‘l Sy Yt,lYtLJ and B = Var (n_l/ 2 Y},lst). Under conditional homoskedastic-
ity, we obtain simplified expressions for A and B. In particular, by application of the law of iterated
expectations, we have that 75, = 0 *E (e7¢7_;) = 0 *E (¢7_,E (e}|Fi—1)) = 0 *E (¢7_;,0%) = 1 for all
i=1,2,.... Similarly, we can show that 7; ; = 0 for all ¢ # j. Thus, for instance in the AR(1) case,
the asymptotic variance of ¢,, = ¢y, simplifies to C' = (2> ¢?)72 (o232 v7) =1 — ¢7.

The validity of any bootstrap method in the context of autoregressions with conditional het-
eroskedasticity depends crucially on the ability of the bootstrap to estimate consistently the asymptotic
covariance matrix C. The standard residual-based bootstrap method fails to do so by not correctly
mimicking the behavior of the fourth order cumulants of €; in the conditionally heteroskedastic case,
as we now show. Let & be resampled with replacement from the centered residuals. The standard

residual-based bootstrap builds y; recursively from & according to
y: :}/t*—,1¢n+é;fk7 t= 17"'7”7

where Y;* | = (y;_,, ... ,y;;p)l, given some initial conditions. The bootstrap analogues of A and B are

A =n U0 B (YY) and B = Var* (nmY2 307 YF (87), respectively. Because & is i.id.
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(0, &2), where 6% =n~t 37 (& — 5)2, ¢f and Y;* | are (conditionally) independent, and

n n

By = n ') B (YL YER) =nt ) BT (VYY) B (8
t=1 t=1
= G2AL.

Thus, the bootstrap analogue of C, C* = A* 1 B*A*~1 = 62A*~1, converges in probability to 02A~1,
implying that the limiting distribution of the recursive i.i.d. bootstrap is N (0, J2A_1). As Theorem 3.1
above shows, 024~ is not the correct asymptotic covariance matrix of &n without further conditions,
e.g., that e; is conditionally homoskedastic. In the general conditionally heteroskedastic case, B depends
on or; ;. The recursive i.i.d. bootstrap implies E* (é‘j,ié;ijérz) = 6 when i = j and zero otherwise,
and thus implicitly sets 7; ; = 1 for i = j and 0 for ¢ # j.

Given the failure of the standard-residual based bootstrap, we are interested in establishing the
first-order asymptotic validity of three alternative bootstrap methods in this environment. Two of
the bootstrap methods we study rely on an application of the wild bootstrap (WB). The WB has
been originally developed by Wu (1986), Liu (1988) and Mammen (1993) in the context of static linear
regression models with (unconditionally) heteroskedastic errors. We consider both a recursive-design
and a fixed-design version of the WB. The third method is a natural generalization of the pairwise
bootstrap for linear regression first suggested by Freedman (1981) for cross sectional data.

As we will see next, the recursive-design WB requires a strengthening of Assumption A in order to
ensure convergence towards the correct asymptotic covariance matrix C. In contrast, the fixed-design
WB and the pairwise bootstrap are valid under the more general Assumption A.

Recursive-design wild bootstrap

The recursive-design WB is a simple modification of the usual recursive-design bootstrap method
for autoregressions (see e.g. Bose, 1988) which consists of replacing Efron’s i.i.d. bootstrap by the wild

bootstrap when bootstrapping the errors of the AR model. More specifically, the recursive-design WB

bootstrap generates a pseudo time series {y; } according to the autoregressive process:

y;tk = ¢1ny:71 + ¢2ny:72 +.o.+ ¢pnyzlp + é;tk> t= 17 EEEX(Z
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where &f = &, with & = g%n (L) yt, and where 7, is an i.i.d. sequence with mean zero and variance one
such that E* [n,|* < A < co. Welet y¥ =0 for all ¢ < 0. Kreiss (1997) suggested this method in the
context of autoregressive models with i.i.d. errors, but did not investigate its theoretical justification
in more general models. Here, we will provide conditions for the asymptotic validity of the recursive-
design WB proposal for finite-order autoregressive processes with possibly conditionally heteroskedastic

errors. 'To show this result we need to strengthen Assumption A as follows:

Assumption A’
iv) E (sgst,rst,s) =0forallr#s, forallt,r>1,s>1.
(vi') E|e*" is uniformly bounded for some r > 2 and for all .

Assumption A’ restricts the class of conditionally heteroskedastic autoregressive models in two di-
mensions. First, Assumption A’ (iv") requires the product moments of {&;} up to order four to behave as
those of an independent series. Milhgj (1985) shows that this assumption is satisfied for the ARCH(p)
model with innovations having a symmetric distribution. Bollerslev(1986) and He and Terésvirta (1999)
extend the argument to the GARCH(p, ¢) case. In addition, Deo (2000) shows that this assumption
is satisfied by certain stochastic volatility models. Nevertheless, Assumption A’ (iv') excludes some
non-symmetric parametric models such as asymmetric EGARCH. Second, we now require the existence
of at least eight moments for the martingale difference sequence {£;} as opposed to only 4r moments, for
some r > 1, as in Assumption A. A similar moment condition was used by Kreiss (1997) in his Theorem
4.3, which shows the validity of the recursive-design WB for possibly infinite-order AR, processes with
i.i.d. innovations.

The strengthening of Assumption A is crucial to showing the asymptotic validity of the recursive-
design WB in the martingale difference context. In particular, conditional on the data, and given the
independence of {n,}, {Y;* &}, F; } can be shown to be a vector m.d.s., where Ff = o (n;,m;_1,--.,71)-
We use Assumption A’ (vi') to ensure convergence of n =1 37, Y;* Y122 to B, = Var* (n_1/2 S Yier),
thus verifying one of the conditions of the CLT for m.d.s. Assumption A’ (iv’) ensures convergence

of the recursive-design WB variance B;; to the correct limiting variance of n=1/2 S, Yi1ee. More
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. . . ro. .
specifically, letting Y;* | = Zt Ly, ol _; with b; = <¢j_1, e ,wj_p) ;Yo =1and ¢; =0 for j <0, it

follows by direct evaluation that

t=1 j=1 1=

t—1

/ % [~ Ak Ax2
bibiE* (81_ 81 3877)
1

A%

where E* (5t & ,Jéf) = ¢2 .22 for i = j and zero otherwise. We can rewrite B} as Z;le IA)le);n_l
Sy 4 €t 5t _;» which converges in probability to B= Z 0'4Tjj under Assumption A. Without
Assumption A’ (iv') an asymptotic bias term appears in the estimation of B = 04> °5°, Z‘;‘;l bibTi g
which is equal to —o® 3772, 3722 ) bibli7; ; for all i # j.  Assumption A’ (iv') sets 7;; equal to zero for
1 # j, and thus ensures that the recursive-design WB consistently estimates B.

Theorem 3.2 formally states the asymptotic validity of the recursive-design WB for finite-order

autoregressions with heteroskedastic errors. Let &Z denote the recursive-design WB OLS estimator,

.ok _ 1
Le. ¢, = ( IZt 1 t— 1) n 12?:13/;*—19?

Theorem 3.2. Under Assumption A strengthened by Assumption A’ (iv') and (vi'), it follows that

sup
r€RP

(v (i) £2) P (v (- 6) 2] 2o
where P* denotes the probability measure induced by the recursive-design WB.

Fixed-design wild bootstrap

The fixed-design WB generates {y;};~; according to the equation

Ui = P1n¥t—1+ QopYr—2+ ...+ ¢n,pyt—13 +&, t=1,...,n, (3.2)

where &F = &, & = ¢,, (L), and where 7, is an i.i.d. sequence with mean zero and variance one such
that E* |n,|*” < A < co. The bootstrap estimator is (Ab; = (n 1Y, Yt,lYt'_l)fl n~IS L Yio1yr
The fixed-design WB corresponds to a regression-type bootstrap method in that (3.2) is a fixed-design
regression model, conditional on the original sample. The fixed-design WB was suggested by Kreiss
(1997). Kreiss’ (1997) Theorem 4.2 provides the first-order asymptotic validity of the fixed-design WB
for finite-order autoregressions with conditional heteroskedasticity of a specific form. More specifically,

he assumes a data generating process of the form yr = > 2 | ¢;y1—i + o (y4—1) v¢, where vy is 1.i.d. (0,1)
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with finite fourth moment. Thei.i.d. assumption on the rescaled innovations v; is violated if for instance
the conditional moments of v; depend on past observations. We prove the first-order asymptotic validity
of the fixed-design WB of Kreiss (1997) under a broader set of regularity conditions, namely Assumption

Al

Theorem 3.3. Under Assumption A,

sup
z€RP

P (Vi (dn = b)) <o) = P (Vi (b, —0) <2)| Do,
where P* denotes the probability measure induced by the fixed-design WB.

In contrast to the recursive-design WB, the ability of the fixed-design WB to consistently esti-
mate the variance, and hence the limiting distribution, of éﬁn does not require a strengthening of
Assumption A. Specifically, the variance of the limiting conditional bootstrap distribution of qAﬁ;kL
is given by A 'BiA%TL where A% = n7130 Y, 1Y) | and B} = Var* (n" V230 Via8)) =
n~LS V1Y) 122, Under Assumption A one can show that A L A and By £l B, thus ensuring
that A 1BxA*1 5 A-1pA-1=C.

Pairwise bootstrap

Another bootstrap method that captures the presence of conditional heteroskedasticity in autore-
gressive models consists of bootstrapping “pairs”, or tuples, of the dependent and explanatory vari-
ables in the autoregression. This method is an extension of Freedman’s (1981) bootstrap method
for the correlation model to the autoregressive context. In the AR(p) model, it amounts to re-
sampling with replacement from the set of tuples (yt,Y;’_l) = (Yt,Yt—1,-- -, Yt—p), t = 1,...,n. Let
{(yf, Y;’i’l) = (y;“,y;‘fl, e ,y;“,p) dt=1,... ,n} be an i.i.d. resample from this set. Then the pairwise

bootstrap estimator is defined by &52 = (n 1Y YY) tpt S Y 1yr. The bootstrap ana-
logue of ¢ is g%n since g%n is the parameter value that minimizes E* [(y;f — QY gzﬁpyf_p)z] . The
following theorem establishes the asymptotic validity of the pairwise bootstrap for the AR(p) process

with m.d.s. errors satisfying Assumption A.
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Theorem 3.4. Under Assumption A, it follows that

sup
PISING

(3-8 <2) P (7 - 6) <) %o
where P* denotes the probability measure induced by the pairwise bootstrap.

Asymptotic validity of bootstrapping the studentized slope parameter

Corollary 3.1 below establishes the asymptotic validity of bootstrapping the t-statistic for the ele-
ments of ¢. To conserve space, we let qAﬁz denote the OLS estimator of ¢ obtained under any of the
three bootstrap resampling schemes studied above. Similarly, we use (y;,Y;”;) to denote bootstrap

data in general. In particular, we implicitly set Y,* ; = Y;_; for the fixed-design WB.

For a typical element ¢; a bootstrap percentile-¢ confidence interval is based on ¢ o= \/_(d)] w9, ")
A m
the bootstrap analogue of the t-statistic ¢ 3. = M In the context of (conditional) heteroskedas-
jn

n,j3j

ticity, C, ,jj and C’ ; are the heteroskedasticity-consistent variance estimators evaluated on the original

and on the bootstrap data, respectively. Specifically, for the bootstrap t-statistic let

Cr = A'BrASL with

n n

Ax -1 * */ Hx o —1 * */ ~k2

An = n E Y;‘,flytfl and Bn_n E Y;‘/flyzl, 1€t >
t=1 =

~ ¥ .
where € = y; — (;5:L Y, | are the bootstrap residuals.

Corollary 3.1. Assume Assumption A holds. Then, for the fixed-design WB and the pairwise boot-

strap, it follows that

sup P*(t&* §x)—P(t& gx)‘gO, j=1,...,p.
z€R Jn n

If Assumption A is strengthened by Assumption A’ (iv') and (vi’'), then the above result also holds for

the recursive-design WB.

4. Simulation Evidence

In this section, we study the accuracy of the bootstrap approximation proposed in section 3 for sample

sizes of interest in applied work. We focus on the AR(1) model as the leading example of an autore-
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gressive process. The DGP is yy = ¢yyp—1 + ¢ with ¢, € {0,0.9}. In our simulation study we allow
for GARCH(1,1) errors of the form &; = \/hyvy, where vy is ii.d. N (0,1) and hy = w + ae? | + Bhs_1,
t =1,...,n. We normalize the unconditional variance of ¢; to one. In addition to conditional N(0,1)
innovations we also consider GARCH models with conditional ¢s-errors (suitably normalized to have
unit variance). For # = 0 this model reduces to an ARCH(1) model. For a = 0 and 8 = 0 the
error sequence reduces to a sequence of (possibly non-Gaussian) i.i.d errors. We allow for varying
degrees of volatility persistence modeled as GARCH processes with o+ 3 € {0,0.9,0.99}. In addition,
we consider AR(1) models with exponential GARCH errors (EGARCH), asymmetric GARCH errors
(AGARCH) and with the GJR-GARCH errors proposed by Glosten, Jaganathan and Runkle (1993).
Our parameter settings are based on Engle and Ng (1993). Note that many of these processes are not
covered by either the conventional asymptotic theory or by the asymptotic theory for the bootstrap.
In particular, the assumption of a finite fourth moment may be violated for some parameter settings.
Nevertheless, it is important to investigate the robustness of these methods to such departures from
our assumptions.

Finally, we also consider the stochastic volatility model e, = vy exp(hy) with hy = Ahy—1 + 0.5uy,
where || < 1 and (ut,v¢) is a sequence of independent bivariate normal random variables with zero
mean and covariance matrix diag(c2,1). This model is a m.d.s. model and satisfies Assumption A.
We follow Deo (2000) in postulating the values (0.936,0.424) and (0.951,0.314) for (A,0,). These are
values obtained by Shephard (1996) by fitting this stochastic volatility model to real exchange rate
data.

We generate repeated trials of length n = 120 and n = 240 from these processes and conduct
bootstrap inference based on the fitted AR(1) model for each trial. All fitted models include an
intercept. The number of Monte Carlo trials is 1,000 with 1,000 bootstrap replications each. The fixed-
design and recursive-design WB involve applying the WB to the residuals of the fitted model. Recall
that the WB innovation is €f = &, with & = y; — <}51nyt_1, where 7, is an i.i.d. sequence with mean
zero and variance one such that E* |nt|4r < A < oo. In practice, there are several choices for 7, that

satisfy these conditions. In the simulations we use 7, ~ N(0,1). Our results are robust to alternative
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choices including the two-point distribution 77, = —(v/5 — 1)/2 with probability p = (v/5+1)/(2v/5) and
n; = (v/5+1)/2 with probability 1 —p, as proposed by Mammen (1993), and the two-point distribution
n, = 1 with probability 0.5 and 7, = —1 with probability 0.5, as proposed by Liu (1988).

We are interested in studying the coverage accuracy of nominal 90% symmetric percentile-t bootstrap
confidence intervals for the slope parameter ¢;. We also considered equal-tailed percentile-t intervals,
but found that symmetric percentile-t intervals in all cases were at least as accurate. Unlike the
percentile interval, the construction of the bootstrap t-interval requires the use of an estimate of the
standard error of n!/ Q(En - ?i;ln) We use the heteroskedasticity-robust estimator of the covariance
proposed by Nicholls and Pagan (1983) based on work by Eicker (1963) and White (1980). We
also experimented with several modified robust covariance estimators (see MacKinnon and White 1985,
Chesher and Jewitt 1987, Davidson and Flachaire 2000). For our sample sizes, none of these estimators
performed better than the basic estimator proposed by Nicholls and Pagan (1983). Finally, virtually
identical results were obtained based on WB bootstrap standard error estimates. The latter approach
involves a nested bootstrap loop and is not recommended for computational reasons. As a benchmark
we also include the coverage rates of the Gaussian large-sample approximation based on Nicholls-Pagan
robust standard errors.

We begin with a review of the simulation results for the stationary AR(1) model. Starting with
the results for N-GARCH errors in Table 2 several broad tendencies emerge. First, the accuracy of the
standard recursive-design bootstrap procedure based on i.i.d. resampling of residuals is high when the
model errors are truly i.i.d., but can be very poor in the presence of N-GARCH. Second, conventional
large-sample approximations based on robust standard errors are more accurate than the recursive-
design i.i.d. bootstrap in the presence of N-GARCH, but less accurate for models with i.i.d. errors.
In either case, their coverage rates may be substantially below the nominal level. Third, all three
robust bootstrap methods are more accurate than the i.i.d. bootstrap or the conventional Gaussian
approximation. Fourth, the recursive-design WB is always at least as accurate as the fixed-design
WB and the pairwise resampling procedures, and its accuracy is very high for all variations of the

DGP, including models with i.i.d. innovations. Specifically, for n = 120 and AR(1) models with high
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persistence, the accuracy of the recursive-design WB tends to be higher than for the pairwise bootstrap.
For n = 240, these differences vanish and both methods are equally accurate. The fixed-design WB is
typically less accurate than the recursive-design WB both for n = 120 and for n = 240, although the
discrepancies diminish with the larger sample size.

The results for the AR(1) model with ¢5-GARCH errors in Table 3 are qualitatively similar, except
that the recursive-design i.i.d. bootstrap and the conventional Gaussian approximation are even less
accurate than for N-GARCH processes. In Table 4 we explore a number of additional models of
conditional heteroskedasticity that have been used primarily to model returns in empirical finance. The
results for the stochastic volatility model are qualitatively the same as for N-GARCH and t-GARCH.
For the other three models, we find that there is little to choose between the recursive-design WB and
the pairwise bootstrap. Their accuracy for n = 120 and highly persistent data tends to be slightly below
nominal coverage, but consistently higher than that of any alternative method. In all other cases both
methods are highly accurate. Neither the i.i.d. bootstrap nor the conventional Gaussian approximation
perform well. The high accuracy of the recursive-design WB even for EGARCH, AGARCH and GJR-
GARCH error processes is surprising, given its lack of theoretical support for these DGPs. Apparently,
the asymptotic inconsistency of the recursive-design WB method has little effect on its performance in
small samples. Fortunately, applications in finance, for which such asymmetric volatility models have
been developed, invariably involve large sample sizes, conditions under which pairwise resampling is
just as accurate as the recursive-design WB and theoretically justified.

Given the computational costs of the simulation study, we have chosen to focus on a stylized autore-
gressive model, but have explored a wide range of conditionally heteroskedastic errors. Although our
simulation results are necessarily tentative, they suggest that the recursive-design WB should replace
conventional recursive design i.i.d. bootstrap methods in many standard applications. The pairwise
bootstrap provides a suitable alternative when sample sizes are at least moderately large and the pos-
sibility of asymmetric forms of GARCH is a practical concern. Even for moderate sample sizes the
accuracy of the pairwise bootstrap is slightly higher than that of the fixed-design bootstrap, which

appears only suited for very large samples.
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5. Concluding Remarks

The aim of the paper has been to extend the range of applications of autoregressive bootstrap methods
in empirical finance and macroeconometrics. = We documented widespread evidence of conditional
heteroskedasticity not just in financial time series, but also in monthly macroeconomic data. We
analyzed the theoretical properties of three bootstrap procedures for stationary autoregressions that
are robust to conditional heteroskedasticity of unknown form: the fixed-design WB, the recursive-design
WB and the pairwise bootstrap.

Throughout the paper, we established conditions for the first-order asymptotic validity of these
bootstrap procedures. We did not attempt to address the issue of the existence of higher-order asymp-
totic refinements provided by the bootstrap approximation. Arguments aimed at proving asymptotic
refinements require the existence of an Edgeworth expansion for the distribution of the estimator of
interest. Establishing the existence of such an Edgeworth expansion is beyond the scope of this paper.
Moreover, the quality of the finite-sample approximation provided by analytic Edgeworth expansions
often is poor and less accurate than bootstrap approximations. Thus, Edgeworth expansions in general
are imperfect guides to the relative accuracy of alternative bootstrap methods (see Hirdle, Horowitz
and Kreiss 2001). Indeed, preliminary simulation evidence indicates that wild bootstrap methods based
on two-point distributions that may yield asymptotic refinements in our context tend to perform no
better than - and in some cases worse than - the first-order accurate methods studied in this paper.
Nevertheless, we found that the robust bootstrap approximation was typically more accurate in small
samples than the usual first-order asymptotic approximation based on robust standard errors. Our
simulation results also highlighted the dangers of incorrectly modelling the error term in dynamic re-
gression models as i.i.d. We found that conventional residual-based bootstrap methods may be very
inaccurate in the presence of conditional heteroskedasticity.

The theoretical and simulation results in this paper suggested that no single bootstrap method for
dealing with conditional heteroskedasticity of unknown form will be optimal in all cases. We concluded
that the recursive-design WB is well-suited for many applications in empirical macroeconomics. This

method performs equally well, whether the error term is i.i.d. or conditionally heteroskedastic, but it
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lacks a theoretical justification for some forms of GARCH that have figured prominently in the literature
on high-frequency returns. When the sample size is at least moderately large and asymmetric forms of
GARCH are a practical concern, the pairwise bootstrap method provides a suitable alternative . The
fixed-design WB has the same theoretical justification as the pairwise bootstrap for parametric models,
but based on our simulation evidence appears only suited for very large samples.

There are several interesting extensions of the approach taken in this paper. One possible extension
is the development of bootstrap methods for conditionally heteroskedastic stationary autoregressions
of possibly infinite order. This extension is the subject of ongoing research. Another useful extension
would be to establish the validity of the recursive-design WB for regression parameters in I(1) autore-
gressions that can be written in terms of zero mean stationary regressors, generalizing recent work by
Inoue and Kilian (2002) on I(1) autoregressive models with i.i.d. errors. Yet another useful extension
would be to establish the asymptotic validity of robust versions of the grid bootstrap of Hansen (1999).

These extensions are nontrivial and left for future research.
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Table 1. Approximate Finite-Sample P-Values of
LM Test of No-ARCH(q) Hypothesis (in Percent)

Univariate AR Models

q 1 2 3 4 5

CRSP Returns 0.00 0.00 0.00 0.00 0.00
DM-U.S. Dollar Returns 1.25 599 828 1.15 1.18
Industrial Output Growth 1.58 240 3.28 1.61 147
M1 Growth 0.00 0.01 0.01 0.02 0.01
CPI Inflation 0.50 1.13 1.79 2.35 2.05
Real T-Bill Rate 0.08 0.18 0.29 0.37 0.34
Federal Funds Rate 3.37 045 0.71 0.94 0.90
Percent Change in Oil Price 2.39 3.77 5.25 4.60 6.44

SOURCE: Based on 20000 bootstrap replications under i.i.d. error null hypothesis. The LM test

is based on Engle (1982). All data are monthly. The macroeconomic data have been filtered using an

autoregressive approximation selected by the AIC. The returns are unfiltered.
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Table 2. Coverage Rates of
Nominal 90% Symmetric Percentile-t Intervals for ¢,

AR(1)-N-GARCH Model

DGP: Yt = ¢1yt—1 + &6 = htl 2Ut, ht =w+ 045152_1 + ﬁht_l,l)t ~ N(O, 1)
Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian
n__ ¢ a+B a D

120 0 0 0 0 0.92 0.91 0.91 0.91 0.90
0.9 0.9 0 0.60 0.89 0.87 0.89 0.85
0.7 0.2 0.64 0.89 0.88 0.90 0.87
0.45 045 0.73 0.89 0.89 0.91 0.88
0.2 0.7 0.84 0.90 0.90 0.90 0.88
0.99 099 0 0.57 0.88 0.87 0.89 0.83
0.79 0.2 0.60 0.88 0.87 0.91 0.84
0.495 0.495 0.69 0.90 0.89 0.89 0.85
0.2 0.79 0.82 0.91 0.90 0.90 0.89
09 0 0 0 0.87 0.88 0.86 0.84 0.83
0.9 0.9 0 0.75 0.89 0.86 0.87 0.83
0.7 0.2 0.76 0.88 0.86 0.87 0.84
0.45 045 0.79 0.88 0.86 0.88 0.85
0.2 0.7 0.84 0.89 0.87 0.87 0.84
0.99 099 0 0.73 0.89 0.87 0.88 0.84
0.79 0.2 0.73 0.88 0.85 0.87 0.85
0.495 0.495 0.77 0.88 0.85 0.87 0.83
0.2 0.79 0.84 0.88 0.85 0.87 0.84
240 0 0 0 0 0.92 0.90 0.90 0.91 0.90
0.9 0.9 0 0.56 0.88 0.87 0.90 0.86
0.7 0.2 0.59 0.89 0.87 0.90 0.87
0.45 0.45 0.69 0.88 0.87 0.91 0.88
0.2 0.7 0.81 0.90 0.89 0.91 0.90
0.99 099 0 0.51 0.88 0.86 0.89 0.84
0.79 0.2 0.56 0.88 0.87 0.90 0.85
0.495 0.495 0.64 0.89 0.88 0.91 0.88
0.2 0.79 0.78 0.90 0.89 0.92 0.90
09 0 0 0 0.89 0.89 0.87 0.87 0.86
0.9 0.9 0 0.72 0.88 0.86 0.90 0.87
0.7 0.2 0.72 0.88 0.86 0.89 0.87
0.45 0.45 0.76 0.89 0.88 0.89 0.87
0.2 0.7 0.83 0.89 0.87 0.88 0.86
0.99 099 0 0.67 0.88 0.87 0.90 0.86
0.79 0.2 0.67 0.89 0.85 0.89 0.85
0.495 0.495 0.70 0.90 0.85 0.89 0.85
0.2 0.79 0.81 0.90 0.88 0.88 0.87

SOURCE: 1000 Monte Carlo trials with 1000 bootstrap replications each. The regression model

includes an intercept. The bootstrap algorithms are described in the text.
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Nominal 90% Symmetric Percentile-t Intervals for ¢;

Table 3. Coverage Rates of

AR(1)-t5~-GARCH Model

DGP: Yt = ¢1yt_1 + &t 6 = htl 2Ut, ht —w+ Oé€t2_1 + ,ght_l, Vg ~ t5
Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian
" ¢ a+B a D

120 0 0 0 0 0.91 0.91 0.88 0.90 0.88
0.9 0.9 0 0.58 0.88 0.87 0.90 0.83
0.7 0.2 0.62 0.89 0.86 0.90 0.83
0.45 0.45 0.69 0.89 0.87 0.90 0.83
0.2 0.7 0.81 0.91 0.87 0.90 0.85
0.99 099 0 0.55 0.88 0.87 0.91 0.79
0.79 0.2 0.58 0.89 0.86 0.89 0.81
0.495 0.495 0.65 0.90 0.86 0.89 0.83
0.2 0.79 0.79 0.90 0.88 0.91 0.85
09 0 0 0 0.88 0.90 0.85 0.86 0.84
0.9 0.9 0 0.75 0.90 0.85 0.89 0.82
0.7 0.2 0.77 0.91 0.85 0.88 0.83
0.45 0.45 0.79 0.90 0.86 0.87 0.83
0.2 0.7 0.84 0.91 0.86 0.87 0.84
0.99 099 0 0.73 0.91 0.85 0.89 0.81
0.79 0.2 0.74 0.90 0.85 0.88 0.81
0.495 0.495 0.75 0.89 0.86 0.88 0.83
0.2 0.79 0.83 0.91 0.86 0.87 0.85
240 0 0 0 0 0.91 0.90 0.89 0.91 0.89
0.9 0.9 0 0.49 0.88 0.87 0.90 0.85
0.7 0.2 0.56 0.89 0.89 0.90 0.87
0.45 0.45 0.67 0.90 0.90 0.90 0.88
0.2 0.7 0.78 0.91 0.90 0.91 0.88
0.99 099 0 0.46 0.88 0.87 0.90 0.83
0.79 0.2 0.53 0.88 0.88 0.89 0.85
0.495 0.495 0.61 0.90 0.89 0.89 0.86
0.2 0.79 0.74 0.89 0.88 0.89 0.87
09 0 0 0 0.90 0.89 0.86 0.89 0.85
0.9 0.9 0 0.69 0.89 0.87 0.90 0.86
0.7 0.2 0.71 0.90 0.88 0.90 0.86
0.45 0.45 0.76 0.90 0.88 0.89 0.87
0.2 0.7 0.82 0.89 0.88 0.89 0.87
0.99 099 0 0.67 0.89 0.87 0.90 0.84
0.79 0.2 0.67 0.89 0.87 0.90 0.84
0.495 0.495 0.69 0.90 0.87 0.91 0.84
0.2 0.79 0.79 0.89 0.87 0.90 0.85

SOURCE: See Table 2.
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Table 4. Coverage Rates of
Nominal 90% Symmetric Percentile-t Intervals for ¢,

(a) AR(1)-EGARCH Model (Engle and Ng 1993)
DGP:  y; = ¢1yi—1 + e 60 = by %0, In(hy) = —0.23 + 0.9In(he_1) + 0.25[]v2 ;| — 0.3v;_1]

Vg ~ N(O, ].)
Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian
n b1
120 0 0.72 0.88 0.88 0.89 0.86
0.9 0.79 0.87 0.85 0.87 0.83
240 0 0.69 0.89 0.88 0.90 0.87
0.9 0.76 0.91 0.89 0.90 0.88

(b) AR(1)-AGARCH Model (Engle 1990)
DGP:  y; = ¢1ys_1 + 1,64 = b %v, by = 0.0216 4 0.6896h;_1 + 0.3174[e;_1 — 0.1108]?

Vg ~ N(O, 1)
Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian
n ¢
120 0 0.73 0.89 0.88 0.89 0.87
0.9 0.78 0.87 0.85 0.87 0.84
240 0 0.68 0.90 0.88 0.89 0.87
0.9 0.73 0.90 0.89 0.88 0.87

(c) AR(1)-GJR GARCH Model (Glosten, Jaganathan and Runkle 1993)
DCP:  y; = ¢rye_1 + ety 66 = b/ ?vg, by = 0.005 + 0.7hs_1 + 0.28[|es_1| — 0.23¢;_1)?

vy ~ N(0,1)
Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian
n ¢1
120 0 0.75 0.89 0.88 0.89 0.86
0.9 0.79 0.87 0.85 0.87 0.84
240 0 0.70 0.90 0.89 0.90 0.88
0.9 0.75 0.91 0.90 0.89 0.87

(d) AR(1)-Stochastic Volatility Model (Shephard 1996)
DGP:  y = ¢1yi—1 + 1,60 = viexp(hy), hy = Mhy—1 + 0.5u, (ug, v) ~ N[0, diag(o?,1)]
Recursive Recursive Fixed Pairwise Robust SE

iid WB WB Gaussian

n 1 A Ou
120 0 0.936 0.424 0.76 0.89 0.88 0.89 0.86
0.951 0.314 0.81 0.89 0.89 0.89 0.87
0.9 0.936 0.424 0.79 0.90 0.88 0.86 0.83
0.951 0.314 0.82 0.89 0.88 0.86 0.83
240 0 0.936 0.424 0.73 0.88 0.87 0.91 0.89
0.951 0.314 0.79 0.89 0.89 0.91 0.90
0.9 0.936 0.424 0.80 0.88 0.87 0.90 0.88
0.951 0.314 0.83 0.89 0.88 0.89 0.88

SOURCE: See Table 2.
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Figure 5.1: Squared Returns
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Figure 5.2: Squared Residuals of Autoregressions
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A. Appendix

Throughout this Appendix, K denotes a generic constant independent of n. We use u.i. to mean

uniformly integrable. ~Given an m x n matrix A, let [|Al| = 37, Y7, |a;]; for a m x 1 vector a,
let |a| = Y 1", |ai|. For any n x n matrix A, diag (a11,...,an,) denotes a diagonal matrix with a;;,
i =1,...,n in the main diagonal. Similarly, let [a;], J=l,m denote a matrix A with typical element

a;j. For any bootstrap statistic T}y we write T} B oin probability when lim,,_. P [P* (|T;5| > 6)] =0
for any § > 0, i.e. P*(|T| > 6) = op(1). We write T =9P* D, in probability, for any distribution
D, when weak convergence under the bootstrap probability measure occurs in a set with probability
converging to one. For simplicity, we omit the dependence on n of bootstrap estimators, e.g. & = &},
Y = Y. Likewise, ¢ = ¢, throughout

The following CLT will be useful in proving results for the bootstrap (cf. White, 1999, p. 133; the

Lindeberg condition there has been replaced by the stronger Lyapunov condition here):

Theorem A.1 (Martingale Difference Arrays CLT). Let {Z,:, Fn:} be a martingale difference
array such that o2, = E(Z%), o2, # 0, and define Z, = n=' Y} | Zny and 63 = Var (\/nZy,) =

n
n Y o I
1.ty Z22,/52 —1 L0, and
2. limy— 0o 552(1%)71_(”5) S, E |Znt|2(1+6) = 0 for some 6 > 0,
then \/nZy, /5, = N (0,1).

The following Lemma generalizes Kuersteiner’s (2001) Lemma A.1. Kuersteiner’s Assumption A.1
is stronger than our Assumption A in that it assumes {g;} is stationary ergodic, and in that it imposes

a summability condition on the fourth order cumulants.
Lemma A.1. Under Assumption A, for each m € N, m fixed, the vector
n
n_1/2 Z (Etgt—l’ ey gtgt—m), = N (0, Qm) s
t=1

Whel”e Qm = 0-4 [TT,S]T s=1,...m"°

Lemmas A.2-A.5 are used to prove the asymptotic validity of the recursive-design WB (cf. Theorem
3.2). In these lemmas, & = é&n,, t =1,...,n, where & = y; — &;Yt,l, and 7, is i.i.d. (0,1) such that

E*n,|* < A < .
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Lemma A.2. Under Assumption A, for fixed m € N,
(i) n 1Y it gr2 at B 52 , in probability, 7 =0,1,...,m;
(ii) n~ Zt_]_H Er_jEt 20, in probability, j =1,...,m
If we strengthen Assumption A by A’ (vi'), then

Ak2 Ak

fii) nol S e ax PR 4n G — 4) ) in probability, j,i = 1,...,m, where 1 (i = j) is 1
t=max(i,j)+1“t “t—j“t—i J

if ¢+ = j, and 0 otherwise.
The following lemma is the WB analogue of Lemma A.1.

Lemma A.3. Under Assumption A strengthened by A(vi'), for all fixed m € N,
n ~
nV2 N (&8, ) S N (o, Qm) :
t=m+1
in probability, where Qm = 04diag (T11y-+ s Tmm) and =4r* denotes weak convergence under the boot-
strap probability measure.
Lemma A.4. Suppose Assumption A holds. Then, n~! POMIED D Pul il A, in probability, where

A=02Y22 ) bl

Lemma A.5. Suppose Assumption A strengthened by A(vi') holds. Then,

n—1/2 ZYt —dpr (O,B) ’

in probability, where B = Z b]b ol

Proof of Theorem 3.1. We show that (i) A1, =n 1> ;1Y) L A; and (ii) Aoy =n Y230 | Viaey
= N (0, B). First, notice that for any stationary AR(p) process we have y; = 3 7% 1) e;—;, where {v;}
satisfy the recursion ¢, — 91951 — ... — ¢, = 0 with )y = 1 and ¢; = 0 for j < 0, implying that

/
Y5207 ¥ < 00 We can write Yy y = (Z?‘;o Vi€t—1—js -+ D ¢j€t_p_j) = > ;21 bjer—j with
bj = (¢j_1, . ,wj_p)l, where ¢_; =0 for all j > 0. Hence, by direct evaluation,

A=E (YY) ) =E Z Z bibier—jer—i | | =0 ijb; =0’ Z¢j¢j+lk‘—l\
j=1 J=0

Jj=1i=1 kl=1,...p
since E (et—e¢—j) = 0 for i # j under the m.d.s. assumption, and > 72 ‘¢J¢]+|k ”‘ <
S50 194 2520 ‘¢]+|k ”‘ < oo forall k, 1. To show (i), for fixed m € N, define AT, =n~' Y70 Vi 1Y/ 0,
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where Vi1 = Y7 gbjer—j. Tt suffices to show: (a) AT}, — AP = 0?30 b as n — oo, for
each fixed m; (b) AT — A as m — oo, and (c) lim,,_ o0 limsup,,_,o P[|A1n — ATL| > n] = 0 for
all n > 0 (cf. Proposition 6.3.9 of Brockwell and Davis (BD) (1991), p.207). For (a), we have

mo= ZJ o> bibinT ST L ey_jery. For fixed i # j it follows that n=1>°7 & jery L)
by Andrews’ LLN (1988) for w.i. L;-mixingales since {e;—jer—;} is a m.d.s. with Ele,_jeri|” <
let—;l5, [let—i|l5 < A*" < oo by Cauchy-Schwartz and Assumption A(vi). For fixed i = j, we can write
niy el i —ot=nTt Yl a4 Y E (af_ﬂ]—'t_j_l) —o? with 2y = ¢} ;- F (Ef_j|.7:t_j_1).
Since z; can be shown to be an u.i. m.d.s, the first term goes to zero in probability by Andrews’ LLN.
The second term also vanishes in probability by Assumption A(iii). Thus, n=1Y 7, af_j ~o2 L
for fixed j. It follows that A7 Lo Zm bjb; = AT, proving (a). (b) follows from the dominated

convergence theorem, given that HZOO bibi|l =252 b;|*> < co. To prove (c), note that

PllAin — AT = 0] < ElAi, — A7

i’bﬂ i|bj| nle|5t i€t—j] < Z]bl K — 0asm — oo,

j>m j=1 j>m

IN

since E |e;—ier—j| < A for some A < oo, and since )22, [b;j| < co. Next, we prove (ii). We apply
Proposition 6.3.9 of BD. Let Z; = Y;_16; = Z]o'io bjei—jer.  For fixed m, define Z]" = Y;_1mer =
> jeobjet—jer, where Vi1, is as above. We first show n~1/23" 7M™ = N (0, By), with B, =
Z;nzo ZZO bjb;OATji. We have

*1/2227”—7171/22213 E1—jEt = an UZZQ jEt = Zb Xj

t=1 =0
By Lemma A.1 we have that (Xp1,..., Xum) = N (0,Qp). Thus, 370X = N(0,By,), with
— Wb, b= (b,,...,0) . Since Hz;‘;oz;ﬁobjb;aw < X0 byl bl ot [l < oo, it
follows that B, —» B=) % 10 > 2o bjbiotTji as m — oo. Finally, for any A € RP, consider

lim lim sup P

n
n_1/2z)\,Zt 1/22)\Izm
t=1

n
> 77] = lim lim sup P n_l/QZ Z Nbjei_jer| >

m— 00 n—o00 = m— o0 N—00 =1 jom
. 2
1
< lim i — B "bigr_s = lim I — 'b;b! =
im 1mnsggo o Z Z Nbjer—_jet = lim_ 1mnsggo i Z Z Z Abjb; Aot Tji 0,

t=1j>m t=1 j>mi>m
where the inequality holds by Chebyshev’s inequality, the second-to-last equality holds by the fact that
E (ei—jetes—ies) = 0 for s # ¢, and all 4, j, and the last equality holds by the summability of {wj} and

the fact that 7;; are uniformly bounded. B
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Proof of Theorem 3.2. By Lemma A.4, n~! POMIED D Pul B’ A, in probability, whereas Lemma
A.5 implies n~1/2 S Y el =dps N (O, E) , in probability. Since under Assumption A(iv’), B = B,
the result follows by Polya’s Theorem, given that the normal distribution is everywhere continuous. l
Proof of Theorem 3.3 We need to show (a) n™1 Y1 | ¥; 1Y/ 4 £ A, and (b) n~1/2 S Y& =der
N (0, B) in probability. (a) was proven in Theorem 3.1. To show (b) note that

n n n
n~t/2 Zn—léf = n7Y2 Z Yiiem, —n Y2 ZYt—l (ee —&)my
t=1
= S Vi - zm Y/ (- 6) = A7 - 45,

t=1

First, note that A} P 0, in probability, since \/n (g% — qi)) =Op (1) and n™t 31 Y, 1Y/ ym, i 0, in
probability. This follows by showing E* (n™* 37 | ¥, 1Y/ ;) =0and Var* (n 130 Y, 1Y n,) =
n23 YV YY) L0, under Assumption A. We next show A3 =9P* N (0, B) in probabil-
ity P, where B = Var (n V230 | Vis1e) = n Y0 B (Yi-1Y/ (7). For any A € RP, X'\ = 1,
let Zf = NY;_1eim,.  {Z}} is (conditionally) independent such that E* (n_l/ 2301 Zf) =0 and
Var* (n_1/2 S Z) = XNn Y YY) ). We now apply Lyapunov’s Theorem (e.g. Durrett,
1995, p.121). Let a2 = N Y1 | Y; 1Y/ ;€2\, By arguments similar to Theorem 3.1, n1a;2 2B I

for some r > 1

oS Bz Bo (A1)

then a"1 37 | ZF =P+ N (0,1) in probability. By Slutsky’s Theorem, it follows that n=4/2 31" | ZF =dr*
N (0, NBX). To show (A.1), note that the RHS can be written as

n

*2\ —T
(%) W B

t=1

Thus, it suffices to show that F ‘n_” Sy !)\’Yt_lstfr E*|n,/*| = 0. Since E* |n,|*" < A < oo, this

holds provided E ‘)\’ Yt_15t|2r < A < oo, which follows under Assumption A. l

Proof of Theorem 3.4 Let & = y; — ﬁ)lYt_l, & =yf — ﬁ)lYt* 1, and ef = yf — ¢'Y;* ;. We show that
(1) n= 'SP, VY, B A in probability, and (i) n=1/2S>" ¥ &F =4P* N (0,B) in probability.

Conditional on the original data, for any 6 > 0,

n
—123@*11@*’1 { ZYt*lYt*’l—n ZYt 1Y, 1}+{n—12n_m’_1—f1}z fntAzn.
t=1

Theorem 3.1 shows As, £.0. Next we show A7, P A, in probability. Conditional on the data, by
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Chebyshev’s inequality, it suffices that E* (A5 A% ) =op(1). But

n /
E* (A3,43,) = n—lE*< *ZZ <Y Y —n” ZYt YL 1> (i@tmﬂl—n—lzn_m’_l>>
t=1

t=1 s=1
n /
= nt {n—lz (Yt_m’_l —n—lzn_m’_1> <y;_1y,;_1 —n—lzm_m’_1> }
t=1 t=1 t=1
where the middle matrix is Op (1) given Assumption A (in particular, given A (vi)), delivering the

result. Next we show (ii). We can write

n~1/? ZY;’ilé;‘ —=n /2 Z (Y;*le;" —n! ZK&IQ)
t=1 t=1 t=1
+ (nl ZY;—lYZfl —n! ZY?IY;&*H) \/ﬁ (g?)n — gf)) = By + Bs.
t=1 t=1

Since By £ 0 in probability because of the previous argument and /n (&)n - ¢>) = Op (1). (ii) follows
if we prove that By =%* N (0, B) in probability. This follows straightforwardly by an application of
Lyapunov’s CLT given that Z; = Y 1ef —n 131 | Y;_1e; is (conditionally) ii.d. with mean zero
and variance Var* (Z}) = n~' 31| Z;Z], where Z; = Yi_1e; —n~ ' >°1 | Y;_1&4, and by Theorem 3.1
n SR Y Y el L B and n? S Yiie Lo m

Proof of Corollary 3.1. Given the previous results, it suffices to show that C* = C,ie. (i) A% = A,
and (i) B* = B, in probability, where B = B for the recursive-design WB. We showed (i) in Lemma
A 4 for the recursive-design WB, and in Theorems 3.3 and 3.4, for the fixed-design WB and pairwise
bootstrap, respectively. Next, we sketch the proof of (ii). For simplicity we take p = 1. The proof for
general p is similar. For each of the three bootstrap schemes, we can write 5 = & — (gb; — gAbn) Y1,
where &; = &;m, for the recursive-design and fixed-design WB, and &; = y; — (bnyfq for the pairwise

bootstrap. Thus,

B = B}, + B, + B3, with

n
n n 9

% _ -1 %2 A%2  D* -1 %3 ax [0 Hx o —1 *4 o * g

Bln = n Zyt 1€t s BZn - Zyt 1€t ( n ¢ ) 9 and B3n =n Zytfl (¢n - ¢n) .
t=1 t=1

= B, (b) B3, = 0, and

It is enough to show that with probability approaching one, (a) Bfn
(c) B3, £ 0. Tor the fixed-design WB, starting with (a), note that y; ; = y;—1, and therefore
Bi, — B = n7 'Y y? & (nt -1) +n IS Y218 — B = xqn + Xon.  Under our assump-
tions Xy, £ 0. Since €& = € — (qﬁn — )yt_l, we can write y;, = n ! Sy y? &2 (77% — 1) —

. R 2
2 (gzﬁ,n - q§> nIS Yt e (i 1) + (qﬁn - ¢) n >0yt (nf—1). We can show that each of
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these terms is op+ (1), in probability. For the first term, write 2, = y? ;&2 (nf - 1), and note that
z is (conditionally) a m.d.s. with respect to F}, = o (1;,...,71). Thus, by Andrews’ (1988) LLN, it
follows that n=1 Y7 | 2 220, in probability, provided that E* |ze|" = Op (1), or E(E*|z]") = O (1),
for some r > 1, which holds under our moment conditions (in particular, the existence of 4r mo-
ments of &; suffices). A similar argument applies to the last two terms of y,,, where we note that
b, — & £0. For (b), and given ¢, — ¢, = op- (1), it suffices that n~! St yp 48 = Op+ (1), in
probability, or that E* ‘n_l S Y48 | = Op(1). This condition holds under Assumption A (first
apply the triangle inequality, then use the definition of &;, and finally apply repeatedly the Cauchy-
Schwartz inequality to the sums involving products of y;—1 and/or &;.) For (c), by a reasoning similar
to (b), it suffices that n=1> " , y# | = Op (1), which holds under our moment conditions. For the
pairwise bootstrap, we proceed similarly, but rely on the (conditional) independence of (yf,y;“fl) to
obtain the results. In particular, for (a), following Theorem 3.3 we can define &} = &} — (g?)n — gb) (THE
with ef = y¥ — ¢y ;, which implies Bf = X1, + Xo,,. We can show that y,, = op- (1), whereas
Xin =11 300 24y + G Where 2y = g2y — T 3Ty e and ¢, =07t 30 y7 et By Theo-
rem 3.1 ¢, L. B. Since z{; 1s a uniformly square-integrable m.d.s. (conditional on the original data)
Andrews’ LLN implies that the first term of y,, is op« (1), in probability. For the recursive-design WB,
for part (a), note that we can write B, = X1, + Xan, Where x1,, = dois fb? <n‘1 Dt é;‘QJezQ) and
=n 130 , S hhber & &t 2. Now, using arguments analogous to those used in the proof
i#g,ij=1
of Lemmas A.4 and A.5 we can show that xy, P B, and Xon it 0, in probability. Similar arguments
apply for (b) and (c).
Proof of Lemma A.1. The proof follows closely that of Lemma A.1 of Kuersteiner (2001). We
reproduce his steps under our weaker Assumption A. In particular, we show that for all A € R™ such
that N\ = 1 we have n=1/23°7 NV, = N (0, N ), where V; = (4841, - . -, t€t—m)’. Noting that
{Y;, 7} is a vector m.d.s., we check the m.d.s. CLT conditions (cf. Davidson, 1994, Theorem 24.3).
Let Z; = N'Y;. We check: (i) n ™' >0, [22 — E (Z7)] £ 0, where E (Z2) = NE (YY) X = NQp\;
and (i) n~Y2 max;<;<y, | Z| £.0. To see (i), note that n=t >0 | [Z2 — E (Z7)] = A1 + As, with

n 'Y (28— E(Z)1Fi)] and Ay =n"Y (B (Z01Fia) — E(Z40)].
t=1

t=1
First consider A;. Since {Z;, F;_1} is am.d.s we have that Z2 —E (Z2|F;-1) is an L1-mixingale with
mixingale constants ¢, = E|Z} — E (Z}|Fi-1)|: E|E (2 — E (Z8|Fi-1) | Feer)| < ey k=10,1,...,
with §;, = 1 for k = 0 and &, = 0 otherwise. Thus, we apply Andrews’ LLN for L;-mixingales (Andrews,

1988) to show A L£.0. Tt suffices that for some r > 1 E ‘Zf‘r <K <oocand n7 !> ¢ < 0o. Now,
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E|Z)* = B\ hisseri” < (5 |\l llesei—illy,)?" < K by repeated application of Minkowski and
Cauchy-Schwartz, given Assumption A(vi). The second condition on {¢;} follows similarly. Next we

consider Ay. We have that

Ay =Xn"") (B (VMY/|1Fia) — E(VWY/)) A= X[ 12& iet— B (7| Fim1) — o7 A Lo,
t=1 i,j=1,...p

given Assumption A(v). This proves (i). To prove (ii), note that by Markov’s inequality, for any n > 0
and for some r > 1,

<T 1r£1ta<)% |Zt| > 77) < ZP (|Zt| > nl/Qn) < n—Zrn—rZE |Zt’2r < Kn—Zrnl—’r' —~0. N
t=1 t=1

Proof of Lemma A.2. First we consider (i) with j = 0, without loss of generality. By definition,

&y = &y, and thus

-l Z 242 _ 52 _ |-l iég (77% _ -1 iég _ 2
t=1 t=1
with the obvious definitions. Under our assumptions Fb, = op(1). So it suffices to show that
P*[|F},| > 6] = op(1), for any 6 > 0, or, by Chebyshev’s inequality, that E* ((Fl*n)Q) = op(1).
Let z; = & (n} —1) and note that E* (zfz}) = 0 for t # s, E* (2?) = ELE* (nf —2m7+1) =
éf (E* (nt) — 1). Thus,

E* [(Ff‘n)2] =FE* <n2222f2:> =n" < *12 (E* (n}) — 1)> <n 'K (nIZéf> =op(1),

=1

Ean—}_FZn?

where the last inequality holds by E* (n}) < A < oo and nt 31, & = Op (1), given that E leg|* <
K < 0o and that <Z>n — ¢ in probability. For (ii), by a similar reasoning, it suffices to note that

2
* —1 ak -2 2 x —2 A
E E HEH E g2 e B ( ; E g2 jet =op(1).
t=j+1 t=j+1 t=j+1
For (iii), note that
n n
-1 a¥x2a% Ak 4 s o1 222 A 2 s
n E €t €4—i€t—j — O Til(i=j)=n § EtEt—iC€t—j (77t77t—i77t—j —1(i= J))

t=max(7,j)+1 t=max(%,j)+1

n

+nt Y (et —o'riy) 1(i =) = G}, + Gan.
t=max(4,j)+1
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Under our assumptions, for any fixed i, j,

n n
-1 N a -1 2
n E EtEt—i€—j=mn g €i€t—i€t—j + Ry,
t=max(%,j)+1 t=max(z,j)+1

where the remainder R,, involves products of elements of g?)n — ¢, which are op (1) under our assumptions,
with averages of products of elements of Y;_; and &, up to the fourth order, which are bounded in

probability, given that F \6t|4 < A < oco. Thus, R, = op (1), and since n~! Z?:max( 4 eler_ier_j —

i,5)
%745 (cf. proof of Lemma A.1), it follows that Ga,, = op (1). So, if welet z; ) = 1227 &7 . —1(i = j),

it suffices that

s 1, o " . "y
I CAEDIE ) I S S )
t=max(s,j)+1 s=max(s,j)+1
1 = 2da PN . A 2
= nZn? Z 5215?45§ij* {(n?nt—int—j —1(= J)) }

t=max(7,j)+1

n
< oot Y asay),

t=max(i,j)+1

where the equality holds because E* (z; (0 )z:(i’j )) = 0 for s # t by the properties of {n,}, and the
second inequality uses the fact that E* |n,|* < A < co. Under Assumption A strengthened by A’
(vi"), we can show that n~! Dt max(ij)+1 g4e? 22, = Op (1), which implies that P*(|G%,| > 6) =
op(1). In fact, given that & = & — (i)n — ¢7),Y},1, it follows that n=' 370 o0y efer &l =
n~t Z?:max(i, )41 sfsfﬂ-effj + op (1). In particular, the remainder contains terms involving products
of elements of ¢ — ¢ (which are op (1)) with terms involving averages of cross products of elements
of Y;—1 and &, up to the eighth order, which are Op (1), given F ]zstls < A < oo. This assumption
also ensures that n~! Dt max(ij)+1 efeffifs?fj = Op (1), by repeated application of the Markov and
Cauchy-Schwartz inequalities. W

Proof of Lemma A.3. Let Ff =0 (n;,7,_1,...,71), and define Y;* = (&/&;_4,... ,etét,m)l. Con-
ditional on the original sample, we have E* (Y*|F;_,) = E* (¢/|F;)) (éffl,...,éffm)l = 0 since
E* (éﬂﬂ*—ﬂ = £ (émt\ﬂ*_ﬂ = &E” (Ut’ﬂ*—l) = 0, where E* (nt‘]:t*—l) = E* (n;) = 0, by the inde-
pendence and mean zero properties of {n,}. Thus, {Y;*, F;} is a vector m.d.s. We now apply Theorem
Al to Z; = XYy for arbitrary A € R™, XA = 1. First, note that 532 = Var* (n V230 ZF) =
Nn=typ L B (YY) = N, A, where by direct evaluation and using the independence and
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zero properties of {n,},
n n
x g -1 2222 -1 2222
O, =diag [ n E E1E1 15,1 E Eréim | -
t=m+1 t=m+1

. —_1x—n 2,2 P 4 . . . . * P
Under our assumptions, we can show n™" Y\ . &/&; ; — o1y, i = 1,...,m, which implies }, ,, —

Q= o*diag (T11y+ -+ Tmm)- Thus, to verify the first condition of the CLT it suffices that

)\I [n—l Z }/;*}/;*I _ Qm

t=m+1

A2 0, in probability.

A typical element (k,[) of the middle matrix is given by

n
e =Tt Y B LE ot (k=1),
t=m+1
where by Lemma A.2 (iii), under Assumption A strengthened by A’ (vi’), we have that V', P 0in
probability. Lastly, condition 2. holds if for some r > 1, n™" 37 | E* |X Yt*|2r =op(1). We take
r = 2. By the c,-inequality, we have

2r

n n m n
n S BN o= e Y B Z)\ geryl <m NN Y B e
t=m+1 t=m+1 i=1 i=1 t=m+1
n
< n*(Tfl)m%“fl Z ‘)\i’%‘ nl Z |étét—i’2r B* ’nt’% B* ‘nt—i}%q —op (1) ’
=1 t=m+1

given in particular that n=t 37" 28—/ =0p(1). M

Proof of Lemma A.4. We can write y; = Z ¢]5t _j» t =1,...,n, where {{ﬁ]} are defined by
1;]- = me(]’p ¢¢] 1, with wo = 1 and ¢ =0 for j < 0. It follows that Y*; = Zt LD 1 bjéf_, for
t=2,...,n, where bj = <¢j_1, . 7¢j_p> . Note Y|* = 0, given the zero initial conditions. Hence,

n
nflzyilyﬁl
t=1
—2n—k— n—j
TZ*n = Z Z (bjb;‘+k+bj+kb;') (nl Z é‘r]éf> .
k=1

Jj=1 t=1+k

n—1
Ty + T3, with T5, =) bl [ n™! Z 2,
j=1 t=j+1

Next, we show: (a) 17, Ba=o Z 1 b}, and (b) T3, = 0, in probability. To prove (a), consider
for fixed m € N,

m—1 n n—1
. 77 -1 %2 7.7/ —1 N 2
7, =10 + Ry, with 17" = E bjb; | n g &~ |,and Ry = g b;b g &
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By Lemma A.2.(i), for each j = 1,...,m, m fixed, n~! Zt—]—l—l 5t2j LS , in probability; also, under
Assumption A, 121]- Ll ¢, implying Bj — bj. Thus, by Slutsky’s theorem, 77" = Em ! b; b’ 0% = A,
in probability. Since {wj} are absolutely summable, it follows that A,, — A as m — oo, by dominated
convergence. Thus, 177" i A, in probability. Choose A € RP arbitrarily such that XA = 1. By BD’s
Proposition 6.3.9, it now suffices to show that, for any 6 > 0, lim,,—,o limsup,,_, ., P* (|XR’{7T)\‘ > 6) =
0, in probability, or lim,, .. limsup,,_, ., E* (|/\’ RLT/\D = 0, in probability, by Markov’s inequality.
Using the triangle inequality and the properties of {n,}, we get

n—1

n—
NRA|) < Nb; b’A E*|n! g2 | = /\’b b’/\ -1 g2
t—j t—j*
Jj=m t=j5+1 j =m t=j+1

. / .
Given that & = &4 — ((bn — <;5> Y;_1, and that ¢,, — ¢ Ll 0, we can show n=!>"1 i€ = = Op (1).

Thus, conditional on the sample, and for all n sufficiently large,

P P
A’(;jE;.A < KZZ Ak Z ‘wj kw‘] l‘

Under our assumptions, ) %, ‘qAﬁj - qu‘ = op (1), so there exists ny such that sup,>,1 > 72, ‘@b]‘ < 00
¢] k:,(/}] l‘ = op (1)
as m — oo, which completes the proof that T}, P A, in probability. Finally, to show (b), consider

first for fixed m € N, T3 = Sy 2 yom k! b]b;+k <n—1 S éjg_jéjg). For fixed j and k, it follows

in probability (cf. Bithlmann, 1995, Lemma 2.2.). This implies sup,>,, Y -

] m

by Lemma A.2.(ii) that n~! Z?:_ﬂrk ST 2o, in probability. Since Bj159+k TN bjbj1k, we have that
s N 0, in probability. To complete the proof of (b) we need to show that each of the following

n—1 n—k—1
73 7 71
B = 5 (i) (00 5 )
k=m—1 j=1 t=1+k
—2n—k—1 n—j
71 7 7! -1 Ak oAk
Ryl = (bjbj+k+bj+kbj> n Z €—j&t | >
k=1 j=m—k t=1+k

N R3TEA

satisfies the condition limy,,—,~ limsup,, ., P* ( > 6) = 0 in probability, for ¢ = 1,2, where

A and 6 are as above. This can be verified analogously to above, using in particular the fact that

Yok <oco.

Proof of Lemma A.5. As in the proof of Lemma A.4, we have Y*; = Zt 1b j€i—;, Where l;j =
. . / . .

(wj_l,...,z/;j_p) L with g = L and §; = 0 for j < 0. Let 27 = Y7 &) = YT ber jep, for
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t=2,...,n, and note that Z7 = 0. Thus,

t—1
—1/222* 2SS e Zb a2y e =
t=2 j=1 t=j+1

For fixed m € N, let A}y, = Z;-”:_ll b1/ > ijr1éi-jé- Next we show: (a) for m fixed, Ay, = dp=
N(O,Bm>, as m — oo, where B, = S bty (b) B, — B as m — oo, and

(¢) limp—o0 limsup,, o P* (|X;f - X,fm‘ > k) =0 for any k> 0. For (a), write

m—1 n
Z PO IE T ES S URN RS DR S

t=j+1 =1 t=j+1

By Lemma A.3, under Assumption A strengthened by A(vi’), we have that for fixed j n=1/2 37" i1 €8t
=dpr N (0, (74Tjj), where the elements of the m x 1 vector composed of these sums are asymptotically
uncorrelated. Hence, Q7,, =dps N (0, Bm), in probability, where B, = Z b]b ot 7jj. Next, note
Q3, P20 in probability, since Bj — b 20 and n—1/2 doiit18i-j8 = Op= (1) for each j = 1,...,m

The asymptotic equivalence lemma now implies (a). (b) follows by dominated convergence given
the summability of {1/Jj} and the uniform boundedness of O'4Tjj. To prove (c), note it suffices that
lim;,— 00 limsup,, ., E* <|X;f — X;’m‘z) = 0, by Chebyshev’s inequality. Equivalently, we consider for
any A € RP, such that '\ =1,

n—1 n—1

(|/\’( — X ) | S0 S iz zy

j=mi=m

where 2, = n~1/2 > ieji1éi—j&;- Since B (Z* z* ) =0fori # jand E* (Z:fj) =n-! Dot g2 ]é?,

nj<ni

it follows that

B* (\X(X; ) Z)\bb’ ! iéf_jéf .

t=j+1

. ’ .
Using the definition of &, i.e. & = e — (gbn — (b) Y;_1, and the fact that ¢,, — ¢ LR 0, we can show

n-1 22 _ -1\ 2 2 R T 22 :
> i1 g2 & =N > 1616 Top(1). Thisimpliesn™ 3 )0 ;4 & jet Op (1), given that
-1 2 2P 4 4. i
n~ iy t=jt1 €t—j€t — O Tjj and o”7;; are uniformly bounded by assumption. The proof of (c) now

follows exactly the argument used in Lemma A.4 when dealing with R}7". B
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