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Abstract

This paper develops a new econometric framework to model duration, volume and volatility

simultaneously. We obtain an econometric reduced form that incorporates causal and feedback effects

among these variables. We construct impulse-response functions that show how the system reacts to a

perturbation of its long-run equilibrium. The methodology is applied to two groups of stocks from

NYSE, classified according to their trade intensity. We document how the two groups of stocks are

characterised by different dynamics: 1) volume is more persistent for frequently traded stocks than for

the infrequently traded ones; 2) the well-known positive relationship between volume and price

variability holds only for the frequently traded stocks at the ultra high frequency level; 3) the trade

arrival process can be considered exogenous only for the not frequently traded stocks; 4) the more

frequently traded the stock, the faster the market returns to its full information equilibrium after a

perturbation.

JEL Classification Codes: C32, G14

Key words: Autoregressive Conditional Duration, GARCH, Ultra High Frequency Data, Empirical Market
Microstructure
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Non-technical summary

How does the presence of insider traders affect the functioning of financial markets? How many

trades and how many hours does it take for private information to be incorporated into prices? In which

markets information is revealed faster? This paper presents an econometric framework that can be used to

address questions of this kind. Each financial transaction can be viewed as the realisation of a stochastic

process, whose variables of interest are the timing between trades (duration), prices and volumes. We

introduce the VAR (Vector AutoRegression) modelling idea into a volatility framework, so that it becomes

possible to elaborate a complete system, where returns and volatilities directly interact with duration and

volume. We allow expected duration, expected volume and variance of returns to depend on current and

lagged values of the variables under study. In this way, we can build a system that incorporates causal and

feedback effects among these variables. We also construct impulse-response functions that show how the

system reacts to a perturbation of its long-run equilibrium.

The econometric methodology proposed in this paper can be used to study the characteristics and

long-run equilibrium properties of different markets. The model is applied to a sample of ten stocks from

New York Stock Exchange, which covers the period from January 1998 to June 1999. The stocks are

divided into two groups according to the intensity with which they are traded. In the empirical analysis, we

find strong evidence that the dynamics of frequently traded stocks differ significantly from those of the

infrequently traded ones. We find that volume is a high persistent process. This confirms the common

intuition that volume (as well as duration and volatility) might be driven by an unobserved factor such as

“private information intensity”. Our results show also that the well-known positive relationship between

volume and volatility holds only for the frequently traded stocks. Finally, the analysis of the system with

the impulse-response functions indicates that the more traded the stock the faster the market returns to its

full information equilibrium after an initial perturbation. This suggests that not frequently traded stocks

might be characterised by a different mechanism of information transmission with respect to the more

frequently traded stocks. In particular, this is consistent with the (plausible) assumption that the more

frequently traded the stock the higher the number of insider traders.
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1. Introduction

The main goal of both theoretical and empirical market microstructure literatures is to explain how

prices are formed in the economy. A critical factor to accomplish this task is to understand how traders

behave, how information is disclosed and how that affects volume and volatility. Many researchers have

developed theoretical models that try to explain how the arrival of news and the interactions among

informed and uninformed traders can affect the prices of the stocks, the spreads posted by the market

makers, the transaction rate and the volumes exchanged in each trade.

Each transaction can be viewed as the realisation of a stochastic process, whose variables of interest

are, say, the timing between trades (duration), prices and volumes. Hasbrouck (1991) and Dufour and

Engle (2000) use a vector autoregressive system to model the interactions among the variables of interest.

Engle and Russell (1998) introduce the Autoregressive Conditional Duration model to study directly the

duration between trades. Engle (2000) incorporates this approach into a volatility framework. Zhang,

Russell and Tsay (2001) improve upon the original Engle and Russell’s model by allowing the expected

duration to depend nonlinearly on past information variables. None of these approaches, however, models

the interactions among trade intensity, volume and price variability. More recently, Grammig and Wellner

(2002) suggest a model for the interdependence of infra-day volatility and trade duration processes, whose

unknown parameters are estimated via GMM. A drawback of this approach is that it assumes that returns

follow a weak GARCH model (see Drost and Nijman (1993)). Since in a weak GARCH setting only linear

projections (and not conditional expectations) of the squared innovation process are considered, the results

cannot be strictly interpreted as estimates of conditional variances.

This paper introduces the VAR idea of Hasbrouck (1991) into a volatility framework, so that it

becomes possible to elaborate a complete system, where returns and volatilities directly interact with

duration and volume.1 This is accomplished in two steps. First, the modelling idea behind the

Autoregressive Conditional Duration by Engle and Russell (1998) is extended to model volumes. We treat

volumes as a stochastic process and model it using an autoregressive specification that multiplies an i.i.d.

                                                          
1 Since we are dealing with ultra high frequency data, throughout the paper we use the term volume as a synonym of trade order size.
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error term. Since the volume can take only positive values, the support of the distribution of the error terms

is the positive real line.

Next, duration, volume and returns are modelled simultaneously, using a special type of vector

autoregression. We allow expected duration, expected volume and variance of returns to depend on current

and lagged values of the variables under study. In this way, we can build a system that incorporates causal

and feedback effects among these variables. We also construct impulse-response functions that show how

the system reacts to a perturbation of its long-run equilibrium. The impulse-response function analysis can

be helpful to understand market “resiliency”, i.e. the speed with which prices tend to converge to the

underlying liquidation value of the asset.

The econometric methodology proposed in this paper can be applied to study the characteristics and

long-run equilibrium properties of different markets. The model is applied to a sample of ten stocks from

NYSE, which covers the period from January 1998 to June 1999. The stocks are divided into two groups

according to the intensity with which they are traded. In the empirical analysis, we find strong evidence

that the dynamics of frequently traded stocks differ significantly from those of the infrequently traded ones.

There are four findings in particular. First, we find that volume is a high persistent process. That is,

the empirical regularities found for duration and volatility models are confirmed also for high frequency

volumes. The strong persistence of these three variables is consistent with the common intuition that all

three variables might be driven by an unobserved factor such as “information intensity” or “private

information intensity” (Clark (1973), Easley and O’Hara (1992)). The persistence of the three variables is

substantially weaker for the not frequently traded stocks. The results are particularly striking for volumes.

Second, our results show that the well-known positive relationship between volume and volatility

(Karpoff (1987)) holds only for the frequently traded stocks. In particular, we find that this positive

relationship holds also at the ultra high frequency level, whereas the previous findings were limited to daily

averages. In the case of the not frequently traded stocks, instead, no strong relationship is found between

volume and variance.

A third interesting finding is that the exogeneity of the trade arrival process imposed by some

theoretical models (Glosten and Milgrom (1985), Easley and O’Hara (1987)) may be a reasonable

assumption only when dealing with not frequently traded stocks. Indeed, we find that for the frequently
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traded stocks both lagged volumes and squared returns affect the expected duration of the next trade, with a

very significant negative coefficient.

Finally, the analysis of the system with the impulse-response functions indicates that the more

traded the stock the faster the market returns to its full information equilibrium after an initial perturbation.

This suggests that not frequently traded stocks might be characterised by a different mechanism of

information transmission with respect to the more frequently traded stocks. In particular, this is consistent

with the (plausible) assumption that the more frequently traded the stock the higher the number of

informed traders. For example, Holden and Subrahmanyam (1992) show that with multiple informed

traders there will be more aggressive trading in the early periods, causing more information to be revealed

earlier. Our results are also consistent with those provided by Zhang, Russell and Tsay (2001), who find

strong evidence that fast and slow transacting periods have quite different dynamics, although their

empirical analysis is limited to the IBM stock.

The paper is structured as follows. In the next section we describe the theoretical models of market

microstructure relevant for the analysis. In section 3 we introduce our econometric model. Section 4

presents the empirical application. Section 5 concludes and suggests new directions for future research.
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2. Economic Theories

Trading in financial markets occurs either for information or for liquidity reasons. Informed agents are

motivated by relevant private information about the real value of the asset not known to others, while the

needs of liquidity traders are generally modelled as exogenous. Consequently, most theoretical research

that explores the relation among trades, volume and stock price dynamics has concentrated on asymmetric

information models. The basic framework was set up by Bagehot (1971) and assumes that in the market

there exist traders with superior information who try to transform their informational advantage into net

profits. A common feature of this type of models is that new information is incorporated into prices

through the interaction of informed and uninformed traders. The underlying assumption is that prices are

only semi-strong form efficient, that is they reflect all public information, but not the private one. If this

private information is valuable, then informed traders can make positive profits. Many possible extensions

of this basic idea have been considered. See, for example, Copeland and Galai (1983), Kyle (1985),

Glosten and Milgrom (1985), Easley and O’Hara (1987 and 1992), Diamond and Verrecchia (1987),

Admati and Pfleiderer (1988). See O’Hara (1995) for a comprehensive survey of the argument.

There are at least three possible ways through which market makers and uninformed traders can

learn from observing market information: from prices, volumes and times between trades. Market

microstructure researchers have devoted considerable efforts in explaining why and how these variables

can convey information.

The early microstructure models (Copeland and Galai (1983) and Glosten and Milgrom (1985)) do

not recognise any explicit role for volume, as all trades involve only one unit of the asset. Nevertheless,

empirical research on the price-volume relation has shown that there is a positive correlation between the

absolute values of daily price changes and daily volumes of stocks (see Karpoff (1987)). The explanations

of this phenomenon revolve around the idea of the random arrival of new pieces of information, as in the

mixture of distribution hypothesis (MDH) developed by Clark (1973)2. MDH assumes that the same

underlying latent event (the information arrival) drives both the returns and volume processes. The

intuition here is that volatilities are changing over time because information is available to traders at a

varying rate. On days when not much information is available, trading is slow and there are only few price

                                                          
2 See also Epps and Epps (1976), Tauchen and Pitts (1983), Andersen (1996) and Liesenfeld (2001).
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changes. On the contrary, when new unexpected information hits the markets, trades become more frequent

and prices move much faster.

On a more theoretical side, Easley and O’Hara (1987) were the first to acknowledge the role of

trade size, by introducing two key differences with respect to previous models: 1) traders are allowed to

transact different trade sizes and 2) the existence of new information is not assumed. Their basic intuition

is that volume influences price because it is correlated with the private information about the stock's true

value. Since informed traders wish to trade larger quantities when they have valuable information, a

rational market maker will interpret large orders as evidence of trading by informed agents and will adjust

beliefs and prices accordingly. Blume, Easley and O'Hara (1994) consider a model in which two groups of

traders receive informative signal of different quality in each period. It is the fact that both the level and the

quality of these signals are unknown that makes volume informative. The authors show that, given the

price, traders can use volume to make inferences about the quality of the signal and hence the real value of

the asset. This suggests that the role of volume in the price adjustment process is to give information about

the underlying uncertainty and hence that volume is correlated to the quality and quantity of traders'

information. Admati and Pfleiderer (1988) offer an alternative explanation for the volume-price variability

relation. They suggest that frequent trading signals that the market is very liquid. Indeed, the most active

liquidity traders are likely to be large financial institutions that trade for liquidity needs of their clients or to

rebalance their portfolios. The idea of Admati and Pfleiderer (1988) is that liquidity traders can choose

when to trade and that they will prefer to trade when the market is very liquid, in order to minimise

transaction costs. For the same reasons, informed traders also want to trade when the market is thick. The

main result of the paper is that if information acquisition is endogenous, then in equilibrium more people

become privately informed in periods when liquidity trading is high, and as a consequence prices become

more informative in these periods.

The third factor that can convey information about the true asset's value is the time between trades.

The motivation of this line of research is that if time can be correlated with any factor that affects asset

prices (such as the arrival of new information), then the timing among trades may be informative to market

participants. Indeed, if we think of the series of transaction prices as being produced by a sampling of the

underlying true stochastic price process, then it might be reasonable to assume that more samples are

observed when there is new information, since informed traders are more likely to trade than uninformed
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ones. On the other hand, another plausible explanation could be that a higher rate of trade simply coincides

with a concentration of liquidity traders and might not be associated to any news arrival.

Diamond and Verrecchia (1987) use a rational expectation model to study the effects of constraints

on short sales on the distribution and speed of adjustment to private information of stock prices. The

empirically testable conclusion of the model is that periods of absence of trade need to be interpreted as the

symptom that bad news have arrived, since they indicate an increased chance of informed traders with bad

news who are constrained from selling short. Hence, absence of trade should be positively correlated with

price volatility.

Easley and O’Hara (1992) develop a framework in which time by itself can affect prices, in the

sense that both periods of trading and non-trading can cause price changes. The intuition is that the lack of

trade can be associated to the event that no new information exists and that prices efficiently incorporate all

the available information. More precisely, after a period in which no trade occurred, the market maker

updates her beliefs, raising the probability she attaches to no information event and to the prior expected

value of the asset. Hence, periods of low variance tend to occur in periods where there is little trade.

We now turn our attention to the econometric models that might be used to evaluate these

predictions.

3. Econometric Models

When studying market microstructure, a major problem faced by the econometrician is that transaction data

arrive at irregular times. The practice was to ignore the time occurring between two trades and analyse the

data with fixed time interval econometric techniques, in many cases by taking averages of the values of

interest over a given, arbitrary interval.3 However, as many theoretical works have shown, there might be a

significant loss of information by adopting this modelling strategy, since the time elapsing between two

trades may be informative about the behaviour of the traders.

The Autoregressive Conditional Duration (ACD) model by Engle and Russell (1998) provides a

possible solution to this problem. Engle and Russell model the arrival times of trades as random variables

                                                          

3 See, for example, Hartmann (1999), Fleming and Remolona (1999), Ederington and Lee (1993), Jones, Kaul and Lipson (1994).
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that follow a point process. Associated with each arrival time there are random variables called marks, such

as volume, spread and price. It is often the case that the variables of interest are those in the marks, for

example the price and the volatility of the asset under study. If this is the case, then the attention and the

efforts of the researcher will be concentrated, for example, on some sort of volatility model. ACD models

will be necessary to formulate the model correctly, perhaps to construct explanatory variables that might

enter the specification of the variance process and to compute impulse-response functions in calendar time

(as in Dufour and Engle (2000)). In particular, this modelling strategy provides a convenient way to test

some of the hypothesis from the market microstructure theories (for example, if shorter durations are due to

the arrival of unexpected news and increase the volatility of the asset).

The objective of this paper is to push further the modelling idea behind the ACD, extending it to

model components of the mark other than prices and to construct a general framework to study the

interaction among them.

Let dt = zt - zt-1 be the duration between two consecutive trades. At the tth transaction, the tth mark xt

is realised. Typically, xt will be a vector containing the price and the volume of the transaction, plus the bid

ask spread posted by the market maker. These data can be viewed as the sample realisation from a

hypothetical stochastic process. We assume that the true DGP generating each pair (dt, xt) can be written as

follows:

(1) ( ) ( )θ;|,~, ttttt xdfxd Ω

where Ωt denotes the information available at time t and θ is a (finite) vector of parameters of interest.

Engle (2000) points out that this joint density can be rewritten as the product of the marginal density

of d times the conditional density of x given d. Assuming, throughout the paper, that the marks of interest

are just returns (y) and volume (v), we can write the conditional density of x given d as the marginal

conditional density of v given d times the density of y conditional on d and v:

(2) 
( ) ( )

( ) ( ) ( )321 ;,,|;,|;|                

;|,,~,,

θθθ
θ

ttttttttt

ttttttt

vdykdvhdg

yvdfyvd

ΩΩΩ=
Ω
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Although other parameterisations are possible, the one proposed here seems natural, given the

widespread use of strategic models in the market microstructure literature. In Kyle’s (1985) model, for

example, insider traders act strategically, i.e. they take into account the effect their orders have on price, by

conditioning on the behaviour of both the market maker and uninformed traders. At the moment in which

new private information becomes available, informed traders face a given supply/demand schedule from

the market maker. They will thus choose the amount of shares to trade in order to maximise their

informational advantage, discounting the market maker reaction to their trade. Since the timing of the trade

as well can convey information to the market maker (see Easley and O’Hara (1992)), informed traders will

take also this aspect into account, when determining the timing of their trades. This implies that both

duration and volume will determine the price at time t. A similar argument can be used regarding the

relationship between duration and volume. When new private information arrives, the informed trader

would like to exploit it by trading a larger amount of shares. However, by following this strategy she would

immediately reveal her type of informed trader to the market maker, who would then adjust prices

accordingly. In order to hide his type, the informed trader will split her buys and sells orders in many

trades. It is then this trading intensity that determines the amount of shares to be sold or bought at each

trade. These arguments support the parameterisation used in (2), suggesting a plausible causality relation

running from duration to volume and from duration and volume to prices.

By modelling each marginal and conditional distribution in (2), it is possible to develop a complete

framework for the triple (dt, vt, yt). Economic theory (Clark (1973), Easley and O'Hara (1987 and 1992), for

example) suggests that clusters of activity should be observed in the market every time some unexpected

piece of information arrives, or simply when the market is very liquid. In terms of duration, this translates

in periods in which we observe very frequent transactions, with very short durations. The ACD models

pick up this aspect.

The typical ACD model can be stated as follows:

(3) 
( )dttt

tttt

dE

diid

θψ
σεεψ ε

;|

),1.(..~                    2

Ω≡
=
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where Ωt is, as usual, the information available at time t, and θd is a vector of parameters that need to be

estimated.

Since ψt is the expectation of dt, εt must be a random variable with mean 1. Moreover, both ψt and

the support of the distribution of εt must be positive, as duration cannot be negative. Engle and Russell

(1998) suggest to model ψt as an autoregressive process. This choice is reasonable, as the autoregression

can be interpreted as the statistical way to model the clustering of activity discussed above. Moreover, the

long memory characteristic of autoregressive models is consistent with the fact that the whole sequence of

past trades might become informative. Pushing along these lines, it seems plausible to model in a similar

fashion the volume. A possible model for volume could be the following:4

(4) 
( )vttt

ttt

vE

diiv

θφ
σηηφ η

;|

),1.(..~                     2
t

Ω≡

=

As in the ACD model, ηt must be an i.i.d. error term with mean 1. Since volume is a variable that

assumes only positive values, the distribution of the error term will be defined only for positive values. By

imposing different distributional assumptions on this error term and specifying the process followed by the

expected volume φt, we can get a variety of models. Moreover, the quasi-maximum likelihood results of

GARCH and ACD models can be directly extended to this model: imposing an exponential distribution for

ηt, it is possible to obtain consistent estimates of the parameters θv, provided that the expected volume φt is

correctly specified.5

Given the predictions of economic theories and the known empirical regularities that characterise

durations and volatilities, we model expected volume as an autoregressive process. To stress the analogy

with duration and volatility models, we call these models Autoregressive Conditional Volume (ACV). The

simplest possible specification is an ACV(1,1):

                                                          
4 Here we assume that volume is a stationary process. In practice, however, volume might have a tendency to increase over time. For
example, while the average daily trading volume in the broad-based S&P 500 index was around 190 million shares back in 1993, it
has since increased steadily to around 1.5 billion shares at present. Given the relatively short sample period used in our empirical
analysis, this is unlikely to create any problem. Nevertheless, when longer time series are studied, one might want to take this aspect
into consideration when data are cleaned for the analysis.
5 See Bollerslev and Wooldridge (1992) and Engle and Russell (1998) for details.
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(5) 11 −− ++= ttt v βφαωφ

Other more general ACV specifications can be introduced. However, instead of pursuing this

strategy, we propose a more general approach. Modelling the returns with a GARCH process whose

variance is denoted by 2
tσ  and specifying a model for each of the marginal and conditional density

functions in (2), we can get a complete and general framework for the random variables of interest. More

precisely, we assume the following6:

(6) 

( ) ( )
( ) ( )
( ) )1,0.(..~                  ,,;

,1~                        ,;

,1~                           ;
2

2

diivdy

i.i.d.dv

i.i.d. d

tttttytt

ttttvtt

tttdtt

ζζθσ
σηηθφ

σεεθψ

η

ε

Ω=

Ω=

Ω=

Note that in this framework the error terms are uncorrelated with each other.

Taken separately, these are, respectively, the ACD, ACV and GARCH models. However, under this

framework it is possible to allow interactions among the three variables under study. According to how we

specify the functional forms for expected duration, expected volume and variance, we can get many

different models and construct an econometric reduced form to evaluate the theoretical predictions from

market microstructure. Moreover, the old issue of the relationship between volume and volatility can be

addressed directly under this framework.7

One possible specification is the following:

(7) 

( ) ( )
( ) ( )
( ) ( )∑∑

∑∑

∑∑

= −−−= −−−

= −−−= −−−

= −−−= −−−

++++++++=

+++++++=

++++++=

p
j jtjjtjjtjtt

q
i itiitiitit

p
j jtjjtjjtjt

q
i itiitiitit

p
j jtjjtjjtj

q
i itiitiitit

ycvcdcvcdccccc

ybvbdbdbbbbb

yavadaaaaa

1
2

876541
2

3210
2

1
2

76541
2

3210

1
2

6541
2

3210

               

                        

σφψσ

σφψφ

σφψψ

                                                          
6 Here we also implicitly assume, without loss of generality, that the conditional mean of the returns has been modelled appropriately.

7 This provides a strong motivation to model volume as in (4). Modelling volume using logs (as done for example by Hartmann
(1999)) makes it more difficult to study directly the interaction between expected volume and volatility.



ECB • Working Paper No 125 • February 200216

The nice feature of this specification is that it has a vector autoregressive moving average

representation. Indeed, rewriting (7) in matrix form, we get, in more compact notation:

(8) ptpttqqtt BBBAA −−− +++++++= τττµµγµ ...... 11011

where ( )2,,’ tttt σφψµ = , ( )2,,’ tttt yvd=τ , γ is a (3,1) vector of coefficients and A1,…,Aq, B0, B1,…,Bp are

(3,3) matrices of coefficients.

To keep things simple, in this paper we concentrate our attention on a first order model of (8):

(9) 11 −− +++= tttt CBA ττµγµ

The parametrisation in (2) imposes that B is lower diagonal with all the elements on the diagonal equal to

zero. Further restrictions can be imposed. For example, by imposing that A and C are diagonal and B is

equal to zero, we get back the three independent models ACD, ACV and GARCH. Note that assuming that

A is diagonal is equivalent to assuming that the parameters of this system are variation free as in Engle,

Hendry and Richard (1983). Under this assumption, the likelihood in (2) can be rewritten as:

(10) ( ) ( ) ( ) ( )yttttvtttdtttttt vdykdvhdgyvdf θθθθ ;,,|;,|;|;|,, ΩΩΩ=Ω

where ( )’,’,’’ yvd θθθθ = . This makes it possible to estimate the three models separately.

Proposition 1 gives conditions under which the VAR in (8) is covariance stationary. All the proofs

are in Appendix A.

Proposition 1 - The process in (8) is covariance stationary if and only if 1<λ  for all values of λ

satisfying 02
2

1
1 =−−− −−

p
ppp

n HHHI �λλλ , where ( ) ( )iii ABIBH +−= −1
0 , i=1,…,p.
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The model described by (6) and (9) allows one to compute the effect that an unexpected trade today

has on future expected duration, volume and volatility. The following proposition shows how to compute

the impulse response function of the system.

Proposition 2 - The impulse-response function of the model (6) and (9) for t >0 is:

)()(
’

)|( 11

0
CABBID

E t
t

tt +−=Φ≡
∂

Ω∂ −−
τ

µ

where D=(I-B)-1(A+C).

The standard errors for the impulse-response are given by Proposition 3.

Proposition 3 - Consider the model formed by (6) and (9). Let ]’’,’,’[
)1(

yvd
p

θθθθ =
×

 and

( ))(
)19(

θκ tt vec Φ≡
×

. If ( ) ( )QNT
a

,0ˆ →−θθ , then ( ) ( )’,0ˆ tt

a

tt QGGNT →−κκ , where 
’)9( θ

κ
∂
∂=

×

t

p
tG .

The ith column of the matrix of derivatives Gt can be easily estimated numerically as follows:

(11) 
( ) ( )

∆
−∆+= θκθκ ˆˆ

titi
t

e
G

where ei denotes the ith column of the (p×p) identity matrix and ∆ is a small number.

4. Empirical Analysis

The econometric models discussed in the previous section were tested on a sample of ten stocks. All

stocks are quoted in NYSE and cover the period from January 1, 1998 to June 30, 1999. They were

randomly chosen using the following procedure. We constructed ten deciles on the basis of the 1997 total

number of trades of all the stocks quoted on NYSE. Then we randomly picked five stocks from the eighth

decile and five from the second decile. All the stocks that didn’t survive the whole period of study were
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discarded and substituted by other randomly chosen stocks from the same decile. The tickers and names of

the ten stocks are reported in Appendix B.

To prepare the data for the analysis, first we dropped any transaction that occurred before the

opening time, 9:30 am, and after the closing time, 16:00. Then, we computed the durations between trades

treating the overnight period as if it didn’t exist, so that, for example, the time elapsing between 15:59:30

and 9:30:10 of the following day is only 40 seconds. We adopted this strategy, because in our sample we

have stocks that are very rarely traded. Eliminating the durations for the overnight period would have

caused the loss of important data for these stocks. Third we computed the price of each transaction as the

average of the bid and ask quotes that appear at least five seconds before the transaction itself. This

procedure is standard in market microstructure studies. Taking the average of the bid and ask quotes limits

the bid-ask bounce problems, while considering only 5 seconds old quotes was originally proposed by Lee

and Ready (1991) and its purpose is to correct reporting errors in the sequence of trades and quotes.8

Fourth, we eliminated all the transaction data with zero duration. We treated these transactions as one

single transaction, summing up all the volumes. Fifth, we adjusted the data for stock splits, by multiplying

prices and volumes by the stock split ratio. Sixth, the returns were computed as the difference of the log of

the prices. Seventh, we adjusted the data for dividend payments and trading halts, by simply deleting the

first observation whose return incorporated the dividend payment or the trading halt.

It is a well-known fact that both durations and volatilities exhibit a typical daily pattern over the

course of the trading day, with very high trading activity at the beginning and at the end of the day. In order

to remove this feature from the data, the time series of durations, prices and volumes were diurnally

adjusted as in Engle (2000). We regressed durations, volumes and absolute values of returns on a piecewise

linear spline with knots at 9:30, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00, 15:30 and 16:00 and constructed

the adjusted series by dividing each original series by the spline forecast.  The two extra knots in the first

and last half-hour reflect the typical different trading intensity during the day.

Throughout the empirical section, we concentrate our attention on volume and variance per

transaction. Even if volatility per unit of time is the natural and commonly used measure of volatility, in

                                                          
8 In the following empirical analysis, all the variables of interest are measured whenever a transaction occurs. However, in the real
world, there is a difference between a transaction and a print. Consider, for example, a 1000 share market order for which the
specialist takes 600 shares and the rest is passed onto the limit order book. This will show up in the TAQ data set as two prints, but in
fact it was just one transaction with three counterparties. This is a limitation of the data set that is hard to overcome. The only way to
get around this problem is use order data, which are rarely available.
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market microstructure we observe only transaction data. Transforming these data into per unit data would

bias the analysis. Indeed, some of the theories predict that the absence of trade must be interpreted as if bad

news has arrived, and hence trades with longer durations should have a higher price impact, measured in

transaction (not calendar) time. In this case, if we divide returns by the square root of the durations (in

order to get volatility per second), the price impact of the transaction will be considerably reduced, since

long durations will almost always be associated with low returns per second.

In table 1 we report some summary statistics for the ten stocks used in the analysis. For each stock

we report the number of observations, and average and median of duration and volume. The sharp

difference between the number of observations for the two groups of stocks reflects the criterion used to

select them. It is interesting to note that this difference is reflected in the average and median duration of

the trades, but not in the volumes, whose average magnitude seems comparable across the two groups of

stocks.

First we estimated the three independent ACD, ACV and GARCH models. In terms of the general

model described in the previous section, we set the matrix B equal to zero and impose the matrices A and C

to be diagonal. In table 2 we report the estimated autoregressive coefficients (the diagonal elements of A)

of the three models. All these coefficients are highly significant. We omit to report the t-statistics in order

to present a cleaner picture of the results.

This exercise is novel in two aspects. First the ACV model is estimated and second these models are

estimated with two groups of stocks, frequently and not frequently traded stocks. Volume appears to be a

very persistent process for the frequently traded stocks, as indicated by the autoregressive coefficients,

which is always above 0.9, and above 0.95 for four out of five stocks. This finding confirms that the

empirical regularities found for duration and volatility models hold for volume as well. It is also consistent

with the predictions of market microstructure theories, according to which markets should be very active

every time an unexpected piece of information arrives or when there is a clustering of liquidity traders.9

The persistence, however, is significantly lower for the five less frequently traded stocks. Here the

autoregressive coefficient drops to 0.7-0.8, and down to 0.3 in one case. This is a first piece of evidence

that the dynamics of frequently traded stocks differ significantly from those of the infrequently traded

                                                          
9 Although the persistence of volume at the ultra high frequency level is a new finding in the empirical literature of market
microstructure, similar evidence was found by Hartmann (1999) who shows how the log of daily foreign exchange market trading
volumes displays conditional heteroscedasticity.
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stocks. Looking also at the ACD and GARCH models, we notice an analogous drop in the level of the

autoregressive coefficients for the not frequently traded stocks, but much less dramatic.

With only this framework at hand, it is not possible to distinguish among different market

microstructure theories. For example, it is not possible to determine whether an increase in market activity

increases the trade variance of the stock (and hence is consistent with the arrival of new information story)

or simply to liquidity reasons (with no effect on variance per trade). However, by estimating models that

allow interactions among the three variables under study, we can address this issue. In the estimation, we

imposed the assumption of weak exogeneity (that is we assume that the matrix A in (9) is diagonal), so that

the optimisation could be done separately for each variable, and we estimated the following model:

2
141312110 −−−− ++++= ttttt avadaaa µψψ

(12) 2
1514312110 −−−− +++++= tttttt bdbdbvbbb µφφ

165143
2

12
2

110
2

11          ’

−−−−

−−

++++++=

++=+=

ttttttt

ttttttt

vcvcdcdcccc

uuuXy

µσσ

θµµρβ

In (12) we model the mean of yt as an ARMA(1,1). The vector Xt contains current and lagged values

of dt and vt. We don’t report the results for the mean because our interest lies principally in the second

moment dynamics.

In table 3 we report the Ljung-Box statistics with 15 lags for raw and fitted data for duration,

volume and returns. The statistics for the raw data are overwhelmingly significant, indicating the existence

of strong autocorrelation in the variables. The analysis of the LB statistics for the residuals of the fitted

models reveals that these models succeed in capturing most of the autocorrelation, as indicated by the sharp

drop in value of the statistic. In some cases, the Ljung-Box statistic is still significant, but this is common

with such large time series (see, for example, Engle (2000)).

To evaluate the effect that duration and volume have on prices, we need to look at their lagged

values, because we are interested in the reaction of the market maker to the last trade. For this purpose, we

need to take into account the effect that lagged duration and volume have on lagged expected volume and

variance per trade. Rewriting (12) in matrix form as in (9), we get:
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The matrix of coefficients of τt-1 is (AB+C) and the null hypothesis that these coefficients are equal

to 0 can be easily tested as shown in Proposition 3. The results are reported in table 4.

Let’s start by looking at the variance equations. The coefficient of lagged duration in the variance

equation is negative for 8 out of 10 stocks, but significant only in three cases. The sign of the duration

coefficient is consistent with the results typically found in the empirical microstructure literature (see, for

example, Engle (2000) and Dufour and Engle (2000)) and suggests that times of greater activity coincide

with a higher fraction of informed traders present in the market. The existing results, however, are limited

to very liquid blue chips stocks. Our findings provide evidence against the robustness of such results when

the analysis is extended to less frequently traded stocks.

The volume coefficient is always positive, but strongly significant only for the frequently traded

stocks. This supports some of the predictions of Easley and O’Hara (1987, 1992), for example suggesting

that trades with larger sizes are more likely to be executed by informed traders and thus have a greater

impact on the price of the stock.

A very different picture emerges from the results for the not frequently traded stocks. In this case

neither duration nor volume affect the variance. Thus the relationships among trading intensity, trade sizes

and volatilities predicted by many market microstructure theories do not find confirmation for the less

frequently traded stocks.

A second striking difference between the two groups of stocks is found in the duration equation. For

the frequently traded stocks, both lagged volumes and squared returns affect the expected duration of the

next trade. The signs of the two variables are always negative, implying that more frequent trading follows

big price movements and high volumes. These results confirm those of Dufour and Engle (2000), who

found that "short durations and thus high trading follow large returns and large trades". However, the

coefficients for the not frequently traded stocks are almost never significant. This suggests that the

exogeneity of the trade arrival process imposed by Dufour and Engle (2000) and by some theoretical

models may be a reasonable assumption only when dealing with not frequently traded stocks.
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The weak exogeneity assumption imposed in (12) could be restrictive, although this strategy was

adopted in a similar context by most empirical microstructure papers. In table 5, we test this restriction as

suggested by Dufour and Engle (2000). We regress the standardised residuals of the three models against

lagged expected variables. More precisely, we run the following three regressions:

121102

2
12110

2
12110

ˆˆ
ˆ

ˆ

ˆˆˆ
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−−

−−

−−

++=

++=

++=

tt
t

t

ttt

ttt

φγψγγ
σ
µ

σβψββη

σαφααε

If the model was correctly specified, then the standardised residuals should be i.i.d, and the

estimated coefficients of the above regressions should be not significantly different from zero. On the other

hand, if the expected variables belong to the model, than we should find significant correlation between the

estimated residuals and the omitted variables. White (1980) type standard errors are reported in

parenthesis. The results show that the coefficients of the lagged expected variables are almost always not

significantly different from zero, especially for the not frequently traded stocks. Only the test for the

variance specification shows evidence of misspecification for the frequently traded stocks, suggesting that

lagged expected volume should also be taken into consideration.

We can use the model developed in this paper also to evaluate the effect that trades have on the

forecasts of expected duration, expected volume and variance per trade. To forecast variance and expected

volume of the next trade, we need to substitute in the system the variables realised at time t with their

expectation. Taking the conditional expectation in (13) and solving for the conditional expectation, we get:
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The object of interest is the matrix of coefficients that multiplies τt-1, (I-B)-1(C+AB). In table 6 we

report these coefficients together with their standard errors. Figures 1 and 2 report also the impulse-

response functions derived in Proposition 2, for the two representative stocks, COX and JAX. Note that the
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coefficients of the variables that enter the expected duration (ψt) are the same as those in tables 4, by

construction.

In the variance equation, volume has, as expected, positive sign and also duration usually enters

with a positive coefficient. Although the sign on the duration seems to contradict the result of table 4, the

explanation is that a high lagged duration increases the expected duration of the next trade. In a geometric

Brownian motion world, for example, the variance per trade would be proportional to the time elapsed

since the last trade.

The impulse-response functions in figures 1 and 2 give a graphical representation of the results of

table 6. Since the impulse-response functions are plotted in transaction time, they are not directly

comparable among different stocks. However, we can approximate the time the system takes to return to its

long-run equilibrium, by multiplying the number of transactions by their average duration. The average

duration per trade of the two representative stocks is 98 seconds for COX and 3,165 seconds for JAX. This

implies, for example, that a shock to the duration of COX is absorbed by the expected duration after about

2,000 trades, or, on average, after 55 hours. In the case of JAX, instead, the same shock is absorbed after

500 transaction, which correspond, on average, to a period of 440 hours. Similar results hold for the other

impulse-responses, indicating that the more traded the stock, the faster the market returns to its full

information equilibrium after an initial perturbation. In particular, this is consistent with the (plausible)

assumption that the more frequently traded the stock the higher the number of informed traders. For

example, Holden and Subrahmanyam (1992) show that with multiple informed traders there will be more

aggressive trading in the early periods, causing more information to be revealed earlier.

The ACD model can be used to compute directly the impulse-responses in calendar time, as

suggested by Dufour and Engle (2000). However, in this case the duration is not exogenous to the volume

and return processes and the impulse-responses can be computed only through stochastic simulation. To do

this, we start the system in steady state and simulate the model described by (6) and (9) for 10 steps ahead,

using the following algorithm:

1. Generate a (3×10) matrix of random error terms, using an exponential distribution with

mean 1 for εt and ηt, and a standard normal for ζt.
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2. Compute µt and τt for t = 1,...,10 using the error terms generated in point (1) and put back

the deterministic component.10 At the same time compute the volatility per second as σt
2/dt and

tabulate µt and the volatility per second as a function of calendar time.11

3. Shock one element of τ0 and repeat the procedure of point (2) using the same matrix of

error terms generated in point (1).

4. Repeat steps (1) to (3) 60,000 times. Sample µt, σt
2/dt and the corresponding shocked

values every second and take the averages.

The impulse-response function is given by the difference, at each point in time, between the average

of the shocked values and the average of the original values.

In figure 3 and 4, we report the impulse-responses in calendar time of COX and JAX during the first

minute after the shock. Note that the impulse-response becomes noisier as time elapses. This is due to a

curse of dimensionality problem. Since there are three variables to simulate, the greater the number of steps

taken into consideration (that is the higher the number of transactions occurred) the less accurate the

simulation will be. Nevertheless, the response over the first few seconds should be accurate enough. The

noise of the impulse-response for JAX is lower because this stock has a much higher average duration.

This implies a lower expected number of trades over the first few seconds and thus a much more accurate

stochastic approximation.

As expected, the top 6 graphs in figures 3 and 4 are perfectly consistent with those of figures 1 and

2 respectively. The bottom three graphs, instead, show the impulse-response of the expected volatility per

second. From these plots we can see that a shock to the volatility of COX is absorbed much faster than a

shock to the volatility of JAX, confirming the finding that not frequently traded stocks are characterised by

a different mechanism of information transmission.

                                                          
10 Remember that we diurnally adjusted the series before estimating the models. The only part of the deterministic component that we
put back was the average of each series.

11 Time was computed as the cumulative sum of the preceding durations, multiplied by the average trade duration of the stock and
rounded to the next nearer integer.
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5. Conclusion

We presented a new econometric framework to analyse ultra high frequency data, that allows expected

duration, expected volume and variance of returns to depend on current and lagged values of the variables

under study. We arrived to an econometric reduced form that incorporates causal and feedback effects

among these variables. We constructed impulse-response functions that showed how quickly the system

returns to its long-run equilibrium after a shock.

The methodology was applied to two groups of stocks, differing from each other according to their

trade intensity. We found significant evidence that the frequency with which the stock is traded is

important in determining its dynamic behaviour. Shocks are absorbed more quickly for frequently traded

stocks than for infrequently traded ones. This is consistent with many insights from market microstructure

theories, according to which, for example, the resiliency of prices is determined by the number of insider

traders active in the market.

An interesting extension of the econometric framework constructed in this paper is to incorporate

depth and spread, by modelling them in a similar way to volume and duration. By adding these two

explanatory variables to the model, one could get a clearer picture about the trading environment of a

specific market.

A second interesting possibility is a systematic study that addresses the issue of the relationship

between the characteristics of different markets and their dynamic properties. Many market microstructure

models show that prices eventually converge to full information value, but provide very little insight into

how long the adjustment process might take. We believe that the impulse-response framework suggested in

this paper might prove a very valuable tool for this kind of analysis. For example, one could compare the

estimates of the model across market structures (electronic versus specialist markets) or across different

periods (crashes versus calm markets).
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Appendix A: Proofs

Proof of Proposition 1

In general, a (n,1)-vector process xt is said to be covariance-stationary if its first and second moments ( )txE  and ( )’, jtt xxE − ,

j=1,2,…,n, are independent of the date t. To see under what conditions process (8) is covariance stationary, assume without loss of
generality that p>q and rewrite (8) as follows:

(13) ( ) ( ) ( ) ( ) ( ) ptpsttqtqqtttt BABAIBAA −−−−− +++++−+−++−+=− ττττµτµγτµ ...... 1110111

where As=0 for s=q+1, q+2, …,p. Since ( )tt E τµ = , the random variables tt τµ −  will form a white noise process. Rewrite (A1) as
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This is a VARMA(p,q) process that can be rewritten as a VARMA(1,q) (see Hamilton (1994), page 259). Define
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Hence, the VARMA(p,q) in (A1) can be rewritten as

qtttt vvF −− ++++= ...1ξκξ
To have stationarity the absolute value of the eigenvalues of F must be less than 1. Proposition 10.1 of Hamilton (1994)

assures that the eigenvalues of F satisfy
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Proof of Proposition 2
Suppose that the system is in steady state up to time t =0. That is, all the innovations before t =0 are equal to 1, so that
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 for t<0

Suppose now that at time t =0 a shock occurs to τ0. This has an immediate effect on µ0 and a lagged effect on µt, t>0. The
effect on µ0 is simply:

µτγµ )(00 CAB +++=
To evaluate the effect of τ0 on future expected µt, note that (9) implies the following:
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because )|()|( 00 Ω=Ω tt EE µτ  by the law of iterated expectations. Noting further that

)()()|( 00
1

01 τµγµ CABIE ++−=Ω −

by recursive substitution, we get the result.
Q.E.D.

Proof of Proposition 3
Since κt is continuous in θ, the result is a straightforward consequence of the properties of sequences of random vectors.
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Appendix B: Stocks Used in the Analysis

A. Frequently traded B. Not frequently traded
CP CDN PACIFIC DTC DOMTAR INC
GAP GREAT A & P FTD FORT DEARBN INCM
COX COX COMMUNICATION GBX GREENBRIER CO
DLP DELTA & PINELAND GSE GUNDLE/SLT ENV
AVT AVNET INC JAX J ALEXANDERS

Table 1 – Summary statistics for the ten stocks used in the analysis. The sharp difference between the number of trades for the two groups of stocks
reflects the selection criterion used. Notice that this difference is reflected in the average and median duration, but not in volume.

# Obs Duration Volume
Ticker

Average Median Average Median
DLP 65304 134.15 45 1483.84 500
GAP 46826 187.3 80 827.03 300
CP 71672 122.43 65 2978.55 500

COX 88917 98.6 35 2692.57 800
AVT 58389 150.02 64 1075.55 400

JAX 2761 3165.7 1032 1002.32 500
GSE 1968 4438.42 1523 1523.53 600
GBX 5154 1695.49 620 1483.95 500
FTD 3264 2416.44 1390 736.95 500
DTC 4161 2094.22 526 2143.91 800
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Table 2 – Autoregressive coefficients (β) of the three models for duration, volume and trade variance.
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These models were estimated imposing the strong exogeneity assumption. In terms of the notation developed in the paper, we set the matrix B equal to
zero and imposed the matrices A and C to be diagonal. Standard errors are omitted, because all the coefficients resulted overwhelmingly significant.

Ticker ACD ACV GARCH
DLP 0.9324 0.9525 0.9618
GAP 0.9521 0.9726 0.9658
CP 0.9651 0.9707 0.9583

COX 0.9373 0.9718 0.9505
AVT 0.8950 0.9154 0.9508

JAX 0.9533 0.7163 0.9072
GSE 0.8303 0.8496 0.9493
GBX 0.9295 0.7154 0.9149
FTD 0.8764 0.2925 0.9487
DTC 0.8857 0.8004 0.9519
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Table 3 – Ljung-Box (LB) statistics for raw data and fitted residuals. The fitted residuals are obtained from estimation of the full model of equation (12):
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The sharp drop in value of the LB statistics reveals that this model sucessfully captures most of the autocorrelation present in the raw data.

Duration Volume Return (mean) Return (variance)
LB Raw LB Fitted LB Raw LB Fitted LB Raw LB Fitted LB Raw LB Fitted

CP 3704.96 118.07 2513.63 31.94 376.17 12.18 3610.92 15.09

GAP 5052.96 56.16 357.02 58.16 45.78 19.62 3539.06 42.14

COX 30163.28 87.65 361.96 25.19 864.21 15.10 694.16 48.29

DLP 20027.87 114.03 2010.17 84.81 604.70 16.16 7922.59 65.76

AVT 6781.7526 80.1084 484.3870 36.1466 484.0792 12.6921 659.2740 39.5419

Duration Volume Return (mean) Return (variance)
LB Raw LB Fitted LB Raw LB Fitted LB Raw LB Fitted LB Raw LB Fitted

DTC 161.73 10.46 401.08 10.80 78.68 15.66 182.09 11.38

FTD 17.68 10.63 82.88 22.63 46.89 33.67 326.16 9.82

GBX 1023.15 15.05 389.99 12.25 31.09 13.84 77.60 11.79

GSE 85.56 6.81 82.69 25.89 37.77 18.77 71.15 15.57

JAX 104.33 7.50 95.01 14.84 31.66 17.46 330.35 11.84
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Table 4 - Coefficients of the matrix (AB +C). These coefficients indicate the effect that lagged values of duration, volume and squared trade returns
have on expected varaibles. Bollerslev-Wooldridge robust t-statistics in parenthesis. Variables significant at the 1% confidence level formatted in bold.
The asterisc denotes significance at 5%.

CP GAP COX DLP AVT

dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ

tψ 0.0274
(23.90)

-0.0004
(-2.79)

-0.0001
(-3.19)

0.0450
(27.50)

-0.0013
(-3.37)

-0.0001
(-1.12)

0.0608
(44.70)

-0.0006
(-6.74)

-0.0002
(-3.48)

0.0679
(39.30)

-0.0026
(-5.36)

-0.0006
(-2.90)

0.0450
(27.50)

-0.0013
(-3.37)

-0.0001
(-1.12)

tφ -0.0011
(-1.55)

0.0227
(12.00)

0.0001
(0.36)

-0.0037
(-4.10)

0.0190
(10.40)

-0.0001
(-3.14)

0.0009
(1.34)

0.0241
(13.60)

0.0000
(-0.17)

0.0002
(0.33)

0.0408
(17.30)

0.0001
(1.60)

-0.0037
(-4.10)

0.0190
(10.40)

-0.0001
(-3.14)

2
tσ -0.0432

(-15.1)
0.0195
(3.68)

0.0421
(17.30)

-0.0043
(-0.88)

0.0198
(4.27)

0.0390
(14.30)

-0.0161
(-5.54)

0.0114
(4.91)

0.0407
(21.40)

-0.0033
(-1.18)

0.0013
(0.44)

0.0399
(9.31)

-0.0043
(-0.88)

0.0198
(4.27)

0.0390
(14.30)

DTC FTD GBX GSE JAX

dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ

tψ 0.0850
(8.05)

0.0001
(0.03)

-0.0009
(-1.26)

0.032 *
(2.29)

-0.0430
(-46.9)

-0.0020
(-1.51)

0.0679
(10.03)

0.0000
(0.03)

0.0003
(0.80)

0.0964
(4.71)

-0.0089
(-1.59)

-0.0021
(-8.30)

0.0388
(5.92)

-0.0012
(-0.62)

-0.0002
(-0.67)

tφ -0.0110
(-1.58)

0.1210
(2.33)

0.0003
(0.19)

-0.0203
(-1.65)

0.1190
(5.02)

-0.0018
(-0.98)

-0.0087
(-1.33)

0.1429
(5.74)

0.0004
(0.21)

0.0012
(0.18)

0.0988
(4.90)

0.0016
(0.99)

-0.0078
(-0.91)

0.1530
(5.06)

0.0064
(1.09)

2
tσ 0.045 *

(2.30)
0.0381
(1.90)

0.0650
(4.24)

-0.04 *
(-1.96)

0.068 *
(2.25)

0.0424
(5.49)

-0.0010
(-0.13)

0.0004
(0.11)

0.0588
(5.20)

0.0038
(0.17)

0.0282
(1.53)

0.0486
(3.94)

-0.0521
(-7.61)

0.029 *
(2.06)

0.0632
(7.25)
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 Table 5 – Tests for omitted variables. We regressed the standardised residuals from model (12) on lagged expected variables:
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White robust t-statistics in parenthesis. Variables significant at the 1% confidence level are formatted in bold. The asterisc denotes significance at 5%.

Exp Dur Exp Vol Volatility
c Exp Vol Volatility c Exp Dur Volatility c Exp Dur Exp Vol

CP 1.0068
(104.49)

0.0153 *
(2.13)

-0.0050
(-3.33)

0.9473
(17.70)

0.0228
(0.49)

0.0069
(1.70)

1.2054
(19.99)

-0.0846
(-1.46)

-0.1136
(-6.23)

GAP 0.9737
(44.58)

0.0004
(0.16)

0.0253
(1.23)

1.0011
(29.53)

0.0028
(0.10)

-0.0010
(-0.42)

1.3936
(15.18)

-0.1096
(-2.40)

-0.2840
(-5.88)

COX 0.9985
(120.59)

0.0123 *
(2.05)

-0.0027 *
(-2.16)

0.9676
(29.13)

0.0077
(0.30)

0.0059
(1.49)

1.0783
(45.57)

0.0082
(0.48)

-0.0800
(-6.46)

DLP 1.0079
(81.09)

-0.0019 *
(-2.31)

-0.0005
(-0.04)

1.0165
(67.34)

-0.0140
(-1.03)

-0.0005
(-0.52)

1.0682
(12.27)

-0.0264
(-1.33)

-0.0284
(-0.55)

AVT 0.9944
(67.13)

0.0054
(0.53)

0.0000
(0.01)

1.0259
(28.64)

-0.0075
(-0.29)

-0.0051
(-0.91)

1.0851
(24.91)

-0.0212
(-0.70)

-0.0546 *
(-2.01)

Exp Dur Exp Vol Volatility
c Exp Vol Volatility c Exp Dur Volatility c Exp Dur Exp Vol

DTC 1.0129
(21.68)

0.0034
(0.10)

-0.0052
(-0.46)

0.9948
(9.72)

-0.0018
(-0.02)

0.0023
(0.12)

1.0260
(9.36)

0.0166
(0.17)

-0.0426
(-2.96)

FTD 0.9831
(8.73)

0.0427
(0.39)

-0.0054
(-0.61)

0.5641
(2.52)

0.3732
(1.76)

0.0181 *
(2.21)

-0.5320
(-0.47)

0.4833
(0.65)

1.0702
(2.39)

GBX 1.0209
(27.26)

-0.0246
(-1.15)

0.0010
(0.15)

1.0076
(15.20)

-0.0291
(-0.46)

0.0061
(0.60)

1.0299
(11.80)

0.0329
(0.50)

-0.0636 *
(-2.14)

GSE 0.9708
(13.77)

0.0185
(0.26)

0.0023
(0.16)

1.2034
(7.29)

-0.1797
(-1.37)

-0.0059
(-0.37)

1.1413
(4.32)

-0.0570
(-0.28)

-0.0783
(-0.77)

JAX 1.0095
(17.29)

0.0298
(0.66)

-0.0129
(-1.08)

1.0518
(8.70)

-0.0622
(-0.68)

0.0037
(0.16)

0.9273
(6.27)

0.1236
(0.97)

-0.0496
(-1.15)
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Table 6 - Coefficients of the matrix (I-B)-1 (C+AB). These coefficients indicate the effect that lagged duration, volume and squared trade returns have on
the forecasts of expected variables. Bollerslev-Wooldridge robust t-statistics in parenthesis. Variables significant at the 5% confidence level formatted in
bold.

CP GAP COX DLP AVT

dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ

tψ 0.0274
(23.90)

-0.0004
(-2.79)

-0.0001
(-3.19)

0.0450
(27.50)

-0.0013
(-3.37)

-0.0001
(-1.12)

0.0608
(44.70)

-0.0006
(-6.74)

-0.0002
(-3.48)

0.0679
(39.30)

-0.0026
(-5.36)

-0.0006
(-2.90)

0.0450
(27.50)

-0.0013
(-3.37)

-0.0001
(-1.12)

tφ 0.0000
(-0.05)

0.0226
(12.00)

0.0001
(0.33)

-0.0023
(-2.56)

0.0190
(10.40)

-0.0001
(-3.19)

0.0063
(7.20)

0.0240
(13.50)

0.0000
(-0.31)

0.0031
(4.27)

0.0407
(17.30)

0.0001
(1.14)

-0.0023
(-2.56)

0.0190
(10.40)

-0.0001
(-3.19)

2
tσ -0.0258

(-5.21)
0.0277
(5.40)

0.0420
(17.30)

0.0313
(6.39)

0.0221
(4.93)

0.0389
(14.20)

0.0375
(11.40)

0.0177
(7.58)

0.0406
(21.30)

0.0156
(2.90)

0.0001
(0.04)

0.0398
(9.23)

0.0313
(6.39)

0.0221
(4.93)

0.0389
(14.20)

DTC FTD GBX GSE JAX

dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ dt-1 vt-1
2

1t−µ

tψ 0.0850
(8.05)

0.0001
(0.03)

-0.0009
(-1.26)

0.032 *
(2.29)

-0.0430
(-46.9)

-0.0020
(-1.51)

0.0679
(10.03)

0.0000
(0.03)

0.0003
(0.79)

0.0964
(4.71)

-0.0089
(-1.59)

-0.0021
(-8.30)

0.0388
(5.92)

-0.0012
(-0.62)

-0.0002
(-0.67)

tφ -0.0099
(-1.40)

0.1210
(2.33)

0.0003
(0.18)

-0.0213
(-1.73)

0.1200
(5.06)

-0.0017
(-0.94)

-0.0056
(-0.89)

0.1429
(5.74)

0.0004
(0.21)

0.0042
(0.57)

0.0985
(4.89)

0.0015
(0.94)

-0.0079
(-0.93)

0.1530
(5.06)

0.0064
(1.09)

2
tσ 0.0840

(3.86)
0.0644
(2.78)

0.0647
(4.22)

-0.0411
(-1.84)

0.0919
(2.88)

0.0414
(5.32)

0.0342
(3.42)

0.068 *
(2.29)

0.0591
(5.21)

0.0089
(0.37)

0.0330
(1.74)

0.0486
(3.93)

-0.0374
(-3.97)

0.0692
(2.79)

0.0648
(7.27)
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 Figure 1 - Impulse-response function for COX (frequently traded). Dotted lines are 95% confidence intervals.
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Figure 2 - Impulse-response function for JAX (not frequently traded). Dotted lines are 95% confidence intervals.
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Figure 3 - Impulse-response function for COX in calendar time (seconds).
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Figure 4 - Impulse-response function for JAX in calendar time (seconds).
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