Discussion of

How Broadband Internet Affects Labor Market Matching by Bhuller, Kostøl, and Vigtel

15th joint ECB/CEPR 2019 Labour Market Workshop

Benedikt Herz benedikt.herz@ec.europa.eu

European Commission

3 December 2019

Important contribution:

- 1 (arguably) exogenous variation
- 2 excellent data
- 3 interesting question

Remarks and suggestions:

- estimating equation
- "career concerns:" Does broadband allow workers to find jobs that better fit their human capital?
- broadband adoption

Estimating equation

Equation (1):

$$y_{m,t} = \delta z_{m,t-1} + x'_{m,t}\beta + \kappa_m + \tau_t + \epsilon_{m,t}$$

 $y_{m,t}$: outcome $z_{m,t-1}$: (lagged) broadband availability κ_m : municipality *m* fixed effects τ_t : year fixed effects

Estimated on individual/firm level:

$$y_{i,m,t} = \delta z_{m,t-1} + x'_{m,t}\beta + \kappa_m + \tau_t + \epsilon_{i,m,t}$$

- Why no individual/firm controls (or even individual/firm fixed effects)?
- Why lagged broadband availability?

Akerman, Garder, Moogstad (2015):

$$y_{i,m,t} = \delta_0 x'_{i,m,t} + z_{m,t} x'_{i,m,t} \delta_1 + w_{i,m,t} \theta_1 + \eta_m + \tau_t + u_{i,m,t}$$

Functional form: logs vs. levels

Dependent Variable:	A. Re- employment	B. Wage in First Job		C. Tenure in First Job	
	(1)	Un-conditional (2)	Conditional (3)	Un-conditional (4)	Conditional (5)
Broadband Availability (Standard Error)	0.016*** (0.006)	990*** (274)	803*** (262)	0.397*** (0.088)	0.234** (0.112)
Dep. Mean	0.659	16,485	22,026	7.3	9.8
Obs. $(N \times T)$	1,339,779	1,339,779	882,569	1,191,827	734,617

Table 7: Employment outcomes after an unemployment spell.

- "starting monthly wage in new job following unemployment measured in 2014-NOK"
- "tenure length in the first job measured in months"

Functional form: logs vs. levels

Dependent Variable:	A. Re- employment	B. Distance to the Employer (Conditional)	C. Employed With New Employer	D. Employed With Previous Employer (Recall Hire)
	(1)	(2)	(3)	(4)
Broadband Availability	0.016***	0.227**	0.015*	0.001
(Standard Error)	(0.006)	(0.107)	(0.009)	(0.006)
[p-value]	[0.006]	[0.039]	[0.092]	[0.864]
Dep. Mean	0.659	8.7	0.460	0.199
Obs. $(N \times T)$	1,339,779	691,541	1,339,779	1,339,779

Table 9: Unemployed Workers' Re-Employment - Distance to Employer and Recall Hiring.

"The result is presented in Panel B, and shows that broadband internet increases the distance by 227 meters on average."

Functional form: growth rates

Table 6: Firms' Hire, Separation and Net Employment Growth.

Dependent Variable:	A. Hire Growth	B. Separation Growth	C. Net Employment Growth
	(1)	(2)	(3)
Broadband Availability	0.006***	0.005*	0.000
(Standard Error)	(0.002)	(0.003)	(0.002)
[p-value]	[0.003]	[0.053]	[0.884]
Dep. Mean	0.129	0.114	0.015
Obs. $(B \times T)$	1,821,902	1,821,902	1,821,902

- large empirical literature: large and persistent reductions in wages after layoffs
- wage-costs mostly associated with losing human capital, proxied by switching industry (e.g., Neal, 1995)
- broadband might help to stay within career, avoid "wasting" human capital

Dependent Variable:	A. Hire Growth	B. Hire Growth from Different Industry	C. Hire Growth from Same Industry	
	(1)	(2)	(3)	
Broadband Availability	0.006***	0.002*	0.003***	
(Standard Error)	(0.002)	(0.001)	(0.001)	
[p-value]	[0.003]	[0.089]	[0.001]	
Dep. Mean	0.129	0.092	0.037	
Obs. $(B \times T)$	1,821,902	1,821,902	1,821,902	

Table 11: Decomposing Firms' Hire Growth By Workers' Past Industry.

- "Panel C shows a stronger increase in hiring of workers with relevant background"
- this is not a formal test (also: most likely difference not significant)

Why not do this from worker-side?

sample of workers who were displaced and found new jobs

 $hired_in_same_industry_{i,m,t} = \delta z_{m,t-1} + x'_{m,t}\beta + \kappa_m + \tau_t + \epsilon_{i,m,t}$

• estimated δ provides formal test

Literature following Neal (1995): evidence that wage costs associated with changing *occupation*, not industry (Kambourov and Manovskii, 2009; Herz, 2019)

- use hired_in_same_occupation_{i,m,t} as dependent variable
- also interesting: look at "skill-distance" between pre- and post-displacement occupation (e.g., Gathman and Schoenberg, 2010)

Why not do this from worker-side?

sample of workers who were displaced and found new jobs

 $hired_in_same_industry_{i,m,t} = \delta z_{m,t-1} + x'_{m,t}\beta + \kappa_m + \tau_t + \epsilon_{i,m,t}$

• estimated δ provides formal test

Literature following Neal (1995): evidence that wage costs associated with changing *occupation*, not industry (Kambourov and Manovskii, 2009; Herz, 2019)

- use hired_in_same_occupation_{i,m,t} as dependent variable
- also interesting: look at "skill-distance" between pre- and post-displacement occupation (e.g., Gathman and Schoenberg, 2010)

Evaluate directly: does broadband lead to smaller loss of human capital (wage) after layoff?

 $\log wage_{i,m,t}^{post} - \log wage_{i,m,t}^{pre} = \delta z_{m,t-1} + x'_{m,t}\beta + \kappa_m + \tau_t + \epsilon_{i,m,t}$

Wage-losses of displaced workers (Herz, 2019; JoLE):

Wage-losses of displaced workers (Herz, 2019; JoLE):

Triple differences:

$$\begin{split} \log \mathsf{wage}_{i,m,t}^{\mathit{post}} - \log \mathsf{wage}_{i,m,t}^{\mathit{pre}} &= \delta z_{m,t-1} + \gamma [\mathit{years_of_training_i} \times z_{m,t-1}] \\ &+ x'_{m,t}\beta + \kappa_m + \tau_t + \omega_i + \epsilon_{i,m,t} \end{split}$$

• hypothesis: $\gamma > 0$

municipality-by-time fixed effects:

$$\begin{split} \log \mathsf{wage}_{i,m,t}^{post} - \log \mathsf{wage}_{i,m,t}^{pre} &= \gamma[\mathit{years_of_training}_i \times z_{m,t-1}] \\ &+ \kappa_{m,t} + \omega_i + \epsilon_{i,m,t} \end{split}$$

- identification from within municipality-by-time
- would alleviate remaining concerns regarding exogeneity of broadband rollout

Triple differences:

$$\begin{split} \log \mathsf{wage}_{i,m,t}^{\textit{post}} - \log \mathsf{wage}_{i,m,t}^{\textit{pre}} &= \delta z_{m,t-1} + \gamma [\textit{years_of_training}_i \times z_{m,t-1}] \\ &+ x'_{m,t}\beta + \kappa_m + \tau_t + \omega_i + \epsilon_{i,m,t} \end{split}$$

• hypothesis: $\gamma > 0$

municipality-by-time fixed effects:

$$\begin{split} \log \mathsf{wage}_{i,m,t}^{\mathsf{post}} - \log \mathsf{wage}_{i,m,t}^{\mathsf{pre}} &= \gamma[\mathsf{years_of_training}_i \times z_{m,t-1}] \\ &+ \kappa_{m,t} + \omega_i + \epsilon_{i,m,t} \end{split}$$

- identification from within municipality-by-time
- would alleviate remaining concerns regarding exogeneity of broadband rollout

Broadband adoption

	A. Firms in the ICT Use Survey		B. Working-age Individuals in the Media Use Survey	
	(1) Baseline	(2) Controls	(3) Baseline	(4) Controls
Dependent Variable: Broadband Availability	1. Has Broadband Internet Access		1. Has Broadband Internet Access	
(Standard Error)	(0.025)	(0.022)	(0.027)	(0.026)
[<i>p</i> -value] Base Dep. Mean	0.380	0.380	0.059	0.059
Obs. $(B \times T / N \times T)$	50,269	50,269	10,959	10,959

Table 3: Firms' and Workers' Internet Access and Online Activities.

"These estimates show that firms and workers are more likely to use broadband internet *from one year to the next* as a consequence of an increase in broadband availability in their municipality."

speed of adoption would be interesting

Dynamic partial adjustment model (Nerlove, 1958)

 $adoption_{i,m,t} = \alpha + \delta z_{m,t} + (1 - \lambda) \times adoption_{i,m,t-1} + \tau_t + \epsilon_{i,m,t}$

Short-run adoption: δ Long-run adoption: $\frac{\delta}{\lambda}$

Small remarks

- find higher separation rate and longer tenure?
- "we assume that ... size of the labor force is independent of broadband internet"
 - what about effect of broadband on *labor force participation*, see Table 10 Panel B.
- broadband definition: download speed>256 kbit/s=.031 megabyte/s