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that the price elasticity faced by retailers depends on the composition of
demand. For a search market with price posting, I show analytically that
retailers optimally charge higher markups if goods are mainly consumed by
low-search-effort households. Additional predictions on the shape of posted
price distributions are consistent with evidence from US supermarket scan-
ner micro-data. I embed search for prices into an incomplete markets model
with non-homothetic preferences and equilibrium price dispersion for multi-
ple varieties. Endogenous heterogeneity in search effort allows the model to
match evidence on differences in prices paid for identical goods and reduces
inequality in consumption relative to expenditure. I show that the equilibrium
response of posted prices across products doubles this direct effect of search
on inequality. In addition, the model reconciles conflicting evidence on the
cyclicality of retail markups, as aggregate shocks change the composition of
demand. Finally, I find that the response of posted prices to a redistributive
earnings tax compensates top earners for up to 14% of their losses.
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1 Introduction

Understanding inequality in households’ consumption is essential to infer the welfare con-
sequences of income and wealth inequality. A growing literature emphasizes heterogeneity
in prices across households and distinguishes consumption from expenditure inequality
(e.g. Aguiar and Hurst 2005, 2007). This distinction is important because posted prices
for identical products exhibit significant dispersion and poor households search for bar-
gains to pay less for the same good. Previous work abstracts from any equilibrium effect
of this shopping effort on posted prices. However, if buyers search more for cheap offers,
retailers face higher competition and optimally reduce the prices they post. This response
matters for distinguishing expenditure and consumption inequality because households
do not buy the same basket of goods and retailers can discriminate prices across prod-
ucts. It also matters for understanding the impact of aggregate shocks and policies, as
the adjustment of posted prices determines the full effect of changes in shopping effort
on the average price of consumption across households.

This paper develops an equilibrium theory of expenditure inequality and price dispersion
that accounts for the response of posted prices to the shopping behavior of heterogeneous
households. First, I provide analytical results on how retailers post prices taking the level
of shopping effort as given and test theoretical predictions against large US micro-data
on grocery transactions. Second, I quantify the effect of retailers’ price posting on the
distinction between expenditure and consumption inequality in equilibrium. Finally, I
highlight the implications of heterogeneous shopping effort for the cyclicality of retail
prices and markups, as well as for the response of prices to redistributive earnings taxes.

The framework developed in this paper incorporates frictional goods markets in the spirit
of Burdett and Judd (1983) in an Aiyagari-Bewley-Huggett economy with multiple goods.
Heterogeneous households decide on their spending, savings, and shopping effort. Shop-
ping effort is subject to a utility cost. Households allocate their total expenditure across
multiple varieties of a grocery good and an outside good. Consumption baskets vary sys-
tematically across households due to non-homothetic preferences over grocery varieties.
The markets for grocery varieties are subject to search frictions. For every unit of con-
sumption they purchase, households have to search for price quotes and draw either one
or two offers simultaneously from the equilibrium distribution of posted prices. Higher
shopping effort increases the probability that a household observes two prices and can
select the cheaper offer. The price distribution for each variety is determined endoge-
nously as the optimal solution to retailers’ price posting problem, which trades off higher
margins per sale against undercutting simultaneously observed alternative offers.
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The first result of this paper is that with heterogeneity in shopping effort, posted prices
depend on the composition of demand. To show this analytically, I focus on retailers’
price posting problem for a single variety and take households’ choices as given. I derive
closed-form expressions for the moments of the posted price distribution and find that
demand-weighted shopping effort is a sufficient statistic for retailers to take into account
rich household heterogeneity. I show that the average posted price decreases in demand-
weighted effort, driven by a reduction in profit margins. A higher demand-weighted
shopping effort means that the average buyer is more likely to observe two prices and
substitute towards a cheaper offer. As a result, retailers face a higher average price
elasticity. Therefore, if a larger share of demand comes from households exerting more
shopping effort, retailers’ best response is to reduce their markups and post lower prices.

In addition, the skewness of posted price distributions strictly increases in demand-
weighted search effort and is independent of all other model parameters. This result
provides a testable prediction that is directly linked to the mechanism generating price
dispersion. For price dispersion to exist in equilibrium, retailers have to be indifferent
between posting low and high prices within a distribution. To keep retailers indifferent
when shopping effort increases, the distribution has to become more dense at the bottom
and less dense at the top, i.e. its skewness must increase.

Empirical evidence supports the relationship between the skewness and demand-weighted
search effort in micro-data on households’ grocery transactions from the Nielsen Consumer
Panel. I first show that high-spending, high-income, and employed households exert lower
shopping effort and pay higher prices for identical barcodes. To test the relationship
between households’ effort and skewness, I exploit variation in demand-weighted shopping
effort across products due to differences in households’ consumption baskets. In line with
theory, the skewness of local, barcode-level price distributions increases in the share of
total expenditure for a given barcode stemming from households with higher search effort.

In equilibrium of the full model, households generate demand-weighted shopping effort
for each good endogenously in response to the distributions of posted prices. I solve for
the equilibrium in households’ choices and posted price distributions numerically. To
quantify the equilibrium effect of shopping on posted prices, I calibrate the model to
evidence from the Nielsen Consumer Panel. I match differences in prices paid within
and across varieties and heterogeneity in consumption baskets along the expenditure
distribution, as well as price dispersion across products. In addition, the model can
account for untargeted moments such as the distribution of expenditures in the data.

The calibrated model shows that the equilibrium response of posted prices more than
doubles the effect of shopping effort on the difference between consumption and expen-
diture inequality. The literature so far has measured the effect of shopping by focusing
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on differences in prices paid for a given product (see e.g. Aguiar and Hurst 2007; Arslan
et al. 2021; Pytka 2022). Under this definition, shopping reduces the cost of consumption
for the bottom versus the top expenditure quintile by 2% in the model and in the data.
However, because high- and low-spending households do not buy the same products,
retailers target their prices to the buyers they face and post lower average margins for
products in the basket of low-spending (high-search) households. In the model, I show
that these differences in posted margins across varieties reduce the cost of consumption
for the bottom quintile of expenditures by an additional 2.5% relative to the top quintile.
Abstracting from the overall effect of shopping overstates consumption inequality be-
tween the top and bottom quintile by 5% given the same observed distribution of grocery
expenditures. Half of this effect is accounted for by differences in posted margins across
varieties. Focusing on welfare to account for the disutility of shopping effort, again the
direct and the equilibrium effect of shopping are equally important for inequality.

In addition, accounting for heterogeneity in shopping effort has implications for the cycli-
cality of prices and markups in response to aggregate shocks. I implement an aggregate
shock based on the decline in net worth and losses in labor earnings during the Great
Recession. The model generates a 0.7% decline in average prices paid upon impact. 0.6
percentage points are accounted for by changes in posted prices as retailers respond with
lower markups to an increase in demand-weighted shopping effort. Only 0.1 percentage
points can be attributed to a decline in the average price paid relative to the average
posted price. This finding shows how focusing on prices paid relative to prices posted
understates the effect of shopping on the cost of consumption over the business cycle.

The change in posted prices reported above is almost entirely driven by the decline in
wealth. Losses in earnings have little impact on retailers’ price posting despite account-
ing for a similar loss in disposable resources. This result arises because wealth losses are
relatively more concentrated at the top of the income distribution and earnings losses at
the bottom. In response to a loss in her earnings or wealth, any household increases her
search effort and reduces consumption. If low-income households reduce their consump-
tion, the composition of demand shifts in favor of high-income households with low search
effort, incentivizing retailers to raise prices. Therefore, in response to earnings losses at
the bottom of the distribution, this shift in demand composition offsets the increase in
individual search effort. In response to a decline in wealth at the top, the increase in
individual effort and the composition effect go in the same direction and unambiguously
reduce prices and markups. This result reconciles seemingly conflicting empirical evi-
dence, suggesting procyclical price and markup responses to house price shocks (Stroebel
and Vavra 2019) and acyclical responses to unemployment fluctuations (Anderson et al.
2020). Overall, composition effects reduce the on-impact response of posted prices to the
combined shock by one third.
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Finally, I show that the response of posted prices to shifts in demand composition partially
compensates net contributors to redistributive policies for the decline in their income. To
do so, I introduce a flat tax on labor earnings and rebate the proceeds lump-sum to all
households. As this policy redistributes resources towards low-income (high-shopping-
effort) households, it increases their share in aggregate demand and hence increases
demand-weighted shopping effort. In an economy with a higher level of redistribution,
retailers therefore optimally choose to reduce their markups and post lower prices. This
channel compensates net contributors in the top quintile of expenditures for 5-14% of the
decline in their after-tax earnings.

The paper is structured as follows: Section 1.1 discusses related literature. Section 2
presents analytical results on the response of posted prices to shopping effort. Section 3
provides empirical evidence on shopping effort and price distributions. Section 4 outlines
the equilibrium model and its calibration. Section 5 studies the implications for inequality.
Section 6 presents the results on cyclicality and policies. Section 7 concludes.

1.1 Related Literature

Search Frictions. Seminal contributions on price search in the goods market include
Butters (1977), Varian (1980), and Burdett and Judd (1983). I build on the latter, which
has been widely applied in macroeconomic research.1 I extend the previous work by
providing analytical results on how the moments of posted price distributions respond to
the distribution of shopping effort in a Burdett-Judd market.

In shopping economies with rich heterogeneity in income and wealth, Arslan et al. (2021)
take posted prices as given and Pytka (2022) endogenizes the price distribution for a
single good. Both papers focus on the direct effect of shopping on prices paid for life-
cycle inequality and the response to idiosyncratic income shocks in a stationary economy.
The equilibrium search framework presented in this paper is the first with rich household
heterogeneity and endogenous price distributions for multiple varieties. I employ it to
study how the equilibrium response of posted prices to shopping affects inequality.

Equilibrium effects of shopping effort on posted prices allow Alessandria (2009) to explain
movements of relative prices across countries and Kaplan and Menzio (2016) to generate
self-fulfilling unemployment fluctuations. Both setups feature price dispersion for a single
good and stylized heterogeneity with finite types of shoppers. I show how rich hetero-

1See e.g. Albrecht et al. (2021), Burdett and Menzio (2018), and Menzio (2021). Additional work on
the macroeconomics of goods market frictions and households’ shopping behavior includes e.g. Angelini
and Brès (2022), Bai et al. (2019), Coibion et al. (2015), Gaballo and Paciello (2021), Kryvtsov and
Vincent (2021), Petrosky-Nadeau and Wasmer (2015), and Sara-Zaror (2022).
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geneity can affect the cyclicality of retail prices due to shifts in demand composition when
accounting for the incidence of aggregate shocks.2

Expenditure Inequality. The paper also relates to the empirical literature on expen-
diture inequality (e.g. Aguiar and Bils 2015; Attanasio and Pistaferri 2016; Coibion et al.
2021). Most closely related are the seminal contributions on the direct effect of shopping
effort on prices paid by Aguiar and Hurst (2005, 2007) and subsequent work (e.g. Aguiar
et al. 2013; Broda et al. 2009; Griffith et al. 2009; Nevo and Wong 2019; Pisano et al.
2022; Pytka 2022). My findings suggest that the equilibrium response of posted prices
more than doubles the direct effect of shopping on inequality studied previously.

Non-Homotheticities. The literature on non-homotheticities dates back to Engel’s
Law in 1857. Most closely related is the recent work focusing on CES-preferences at the
barcode level (Argente and Lee 2021; Auer et al. 2022; Faber and Fally 2022; Handbury
2021; Jaravel 2019). Non-homotheticities at this disaggregated level are often interpreted
as substitution along a quality margin (Bils and Klenow 2001; Bisgaard Larsen and Weis-
sert 2020; Ferraro and Valaitis 2022; Jaimovich et al. 2019). Mongey and Waugh (2022)
generate non-homotheticities from logit-preferences in an incomplete-markets economy.
None of the previous work considers interactions with shopping effort and price dispersion.

Retail Prices and Markups. The paper also extends the empirical literature on retail
prices and markups. Seminal work by Kaplan and Menzio (2015) and Kaplan et al. (2019)
provides evidence on the structure of price distributions but does not consider their co-
movement with demand composition across products. Stroebel and Vavra (2019) find
retail prices and markups to respond procyclically to local variations in house prices and
attribute this pattern to empirically observed changes in shopping behavior. Anderson
et al. (2020) find markups paid to co-vary positively with proxies for local income, driven
by differences in products bought. Their findings are in line with the theory of this paper.

Closely related is the complementary work of Sangani (2022), providing evidence on
higher markups for goods bought by high-income households. He rationalizes his find-
ings by combining the single-variety model of Burdett and Judd (1983) with stylized
household heterogeneity and studies the implications of increasing income inequality for
the rise in aggregate markups. In contrast, I provide direct empirical evidence on the
mechanism, testing predictions on the relationship between shopping and the shape of
price distributions. My focus is the feedback between equilibrium prices and inequality.
Hence, I develop a model with rich household heterogeneity in the tradition of Bewley
(1977) and Aiyagari (1994), featuring non-homothetic preferences and endogenous price
distributions for multiple varieties.

2Huo and Ríos-Rull (2015) develop a framework with heterogeneous households and directed search
for quantities and show how shifts in demand composition can affect productivity.
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2 The Mechanism: Price Posting with Search Frictions

To study how household heterogeneity can affect posted price distributions, I analyze
retailers’ price posting problem in a frictional product market. Throughout this section,
I take the distribution of households, their shopping effort, and consumption choices as
given and focus on the distribution of posted prices. I build on the price posting problem
of a single-variety retailer in a market with consumer search as introduced by Burdett
and Judd (1983) and Pytka (2022). Within this framework, I characterize analytically
how moments of the posted price distribution respond to the distribution of households.

2.1 Retailers’ Problem and Posted Price Distributions

Consider the market for a single variety j, which is produced at homogeneous marginal
cost κj, and for which all consumers have identical maximum willingness to pay p̄j > κj.
The variety is sold by a continuum of homogeneous retailers of measure one. The demand
side of the market consists of a continuum of households indexed by their type i, with λi
being the distribution over types. A type i household is characterized by her disposable
resources xi and consumes a quantity cj(xi) ≥ 0 of variety j, which she splits into
a measure cj(xi) of infinitesimal purchases. The market for the variety is subject to
incomplete information. For each purchase she makes, a household observes either one or
two price postings, drawn at random from the equilibrium distribution of posted prices
Fj(p). The probability of observing two price draws for any given purchase is determined
by the household’s shopping effort s(xi) ∈ [0, 1], i.e. shopping effort is the intensity with
which households search for a second price observation. For purchases with a single price
observation the household buys the good if the observed price is below the maximum
willingness to pay p̄j. Purchases with two simultaneous price observations are made at
the lowest offer below p̄j.

Retailers’ Problem. Retailers commit to a price for variety j before meeting any
buyers. They post prices to maximize their profits, taking expectations over the type of
household they will meet in the market and how likely any type is to see a second price
offer simultaneously. The total profits of a retailer posting price p are given by

πj(p) = Cj︸︷︷︸
demand

per retailer
(market size)

[∫
λicj(xi)

Cj
[(1− s(xi)) + s(xi)2(1− Fj(p))] di

]
︸ ︷︷ ︸

sales per demand
(market share)

(p− κj)︸ ︷︷ ︸
profit

per sale
(margin)

,

where Cj =
∫
λicj(xi)di is total demand for variety j and λicj(xi)

Cj
the fraction of demand

accounted for by households of type i. In words, profits are given as the margin per sale
(p− κj) times total demand per retailer (Cj) times the market share. To determine her
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market share, the retailer considers the likelihood with which any buyer she meets in the
market observes a second price quote simultaneously: With probability λicj(xi)

Cj
she meets

a type i household, and with probability s(xi) this household has a simultaneous second
price observation conditional on being type i. In this case the retailer only makes a sale if
her price offer is lower than the second quote, which conditional on posting price p occurs
with probability (1− Fj(p)).3 The problem can be simplified to

πj(p) = Cj [(1− s̄j) + s̄j2(1− Fj(p))] (p− κj), (1)

where

s̄j =

∫
λicj(xi)

Cj
s(xi)di (2)

is the demand-weighted average search effort in the market. Deciding on the price to post
in this market, retailers trade off between margins per sale and their market share. A
higher price increases the margin earned per sale (p−kj) but increases the probability to
be undercut by a competitor Fj(p) and hence decreases demand at the extensive margin.
Taking into account demand-weighted search effort s̄j is key for the second effect as it
determines the ex-ante likelihood that the average buyer observes a second price and
therefore the ex-ante likelihood any retailer has to compete for a purchase. In this sense,
s̄j determines the price elasticity of demand across retailers.

As retailers are homogeneous, a non-degenerate equilibrium price distribution requires
them to be indifferent between posting a range of prices. For any price increase on the
support of the posted distribution, the benefit of earning a higher margin on the current
number of sales has to be exactly offset by the cost of a loss in market share. Formally,
this requires ∂π(p)

∂p
= 0 which yields

Cj [(1− s̄j) + s̄j2(1− Fj(p))]︸ ︷︷ ︸
current sales

= Cj [s̄j2fj(p)]︸ ︷︷ ︸
loss in sales

(p− κj)︸ ︷︷ ︸
current
margin

. (3)

The market size Cj cancels from the expression as retailers are infinitesimal and only
compete over their share in a total number of sales they take as given. Demand-weighted
average shopping effort s̄j summarizes all relevant information about the distribution of
households and is a sufficient statistic for the retailer to post a price.

Posted Price Distribution. For given κj, p̄j, and 0 < s̄j < 1, Burdett and Judd (1983)
and Pytka (2022) show that a unique and continuous equilibrium distribution of posted

3The multiplication of the second term by 2 captures that the retailer can be either the first or second
of two price observations.
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prices Fj(p) exists with compact support [
¯
pj, p̄j], where

Fj(p) =


0 if p <

¯
pj

1− 1−s̄j
2s̄j

p̄j−p
p−κj if p ∈ [

¯
pj, p̄j]

1 if p > p̄j

(4)

and

¯
pj = κj + (p̄j − κj)

1− s̄j
1 + s̄j

.

Retailers play a mixed strategy, randomizing prices over the interval [
¯
pj, p̄j] according to

the density fj(p) associated with Fj(p). The distribution of posted prices depends on
the marginal cost κj and households’ maximum willingness to pay p̄j, as well as demand-
weighted shopping effort s̄j, but is independent of total demand per retailer Cj. As
marginal cost are constant across retailers, Fj(p) is a distribution of markups.

2.2 The Effect of Heterogeneous Shopping on Posted Prices

How does the distribution of households affect posted prices? As demand-weighted effort
s̄j is a sufficient statistic for retailers’ pricing decision, an answer to this question can be
split into two steps: (i) How does s̄j change with the distribution of households? and (ii)
How does the distribution of posted prices respond to changes in s̄j?

Demand-Weighted Shopping Effort. Focus first on how the distribution of house-
holds determines s̄j. Equation (2) implies that a retailer takes into account type i house-
holds’ shopping effort according to their share in total demand λicj(xi)

Cj
. From here on out

I will refer to the vector of these shares as demand composition. Differences in demand
composition shift the weights attached to each household’s idiosyncratic search behavior.
In this way, heterogeneity in individual effort s(xi) creates a role for demand composition
to affect s̄j and through it posted prices. s̄j is higher if a larger share of demand is
accounted for by households with a higher shopping effort. Taking (shifts in) demand
composition into account is important to fully capture how changes in the distribution
of disposable income affect s̄j. Consider an increase in type i’s disposable resources xi
holding the resources of all other households constant. The derivative of s̄j w.r.t. type i’s
disposable resources is given by

∂s̄j
∂xi

=
λicj(xi)

Cj

∂s(xi)

∂xi
+
λi
Cj

(s(xi)− s̄j)
∂cj(xi)

∂xi
. (5)

The first term is the change in type i’s shopping effort, which is weighted by her share in
demand. The second term captures shifts in demand composition. Whether a change in
type i’s income increases or decreases s̄j through its effects on shopping behavior and on
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demand composition depends on the properties of s(xi) and c(xi). The sign of the direct
effect on shopping is pinned down by the slope of the shopping policy function ∂s(xi)

∂xi
.

The demand composition effect depends on a household’s position in the distribution of
shopping effort interacted with the change in her consumption policy. If j is a normal
good

(
∂cj(xi)

∂xi
> 0
)

shifts in demand composition increase s̄j in response to increases in
the disposable income of high shopping households with s(xi) > s̄j and decrease s̄j in
response to increases in xi for low shopping households (s(xi) < s̄j). If j is an inferior
good

(
∂cj(xi)

∂xi
< 0
)

the argument is reversed.

Moments of the Posted Price Distribution. Even without disciplining households’
behavior we can assess how changes in s̄j affect posted prices. Given s̄j, equation (4)
determines the ensuing posted price distribution. Taking the derivative of (4) with re-
spect to s̄j yields ∂Fj(p)

∂s̄j
≥ 0, i.e. a distribution with lower demand-weighted shopping

effort s̄j has first-order stochastic dominance over any distribution with higher s̄j and
hence a greater probability to observe high posted prices. Figure 1 highlights this result
graphically. It shows that for given κj and p̄j a lower level of s̄j shifts mass of the posted
density towards the maximum willingness to pay, away from the marginal cost.

Given the analytical characterization of Fj(p), the problem yields closed form solutions
for the moments of the distribution and their relation with s̄j. Expressions for the first
three central moments are presented in Proposition 1.

Proposition 1 The mean µFj , standard deviation σFj , and skewness γFj of the posted
price distribution Fj(p) for given κj, p̄j, and 0 < s̄j < 1 can be derived as

(i)

µFj = κj + (p̄j − κj)
1− s̄j
2s̄j

log

(
1 + s̄j
1− s̄j

)
︸ ︷︷ ︸

average posted margin

,

(ii)

σFj =

√√√√(p̄j − κj)2

(
1− s̄j
1 + s̄j

−
(
1− s̄j
2s̄j

)2

log

(
1 + s̄j
1− s̄j

)2
)
,

(iii)

γFj =

1−s̄j
4s̄j

(
1−

(
1−s̄j
1+s̄j

)2)
− 3

(1−s̄j)2
2s̄j+2s̄2j

log
(

1+s̄j
1−s̄j

)
+ 2

(
1−s̄j
2s̄j

)3
log
(

1+s̄j
1−s̄j

)3
(

1−s̄j
1+s̄j

−
(

1−s̄j
2s̄j

)2
log
(

1+s̄j
1−s̄j

)2) 3
2

.

Proof. Follows from equation (4) and the standard formulas for the first three central
moments of any continuous distribution. ■
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(a) Density (b) Cumulative Density

Figure 1: Posted Price Distributions
Note: Price distributions derived from retailers’ optimal price posting problem for marginal cost κj = 1,
maximum willingness to pay p̄j = 2, and three levels of demand-weighted shopping effort s̄j .

Proposition 2 implies that the average price posted is increasing in marginal cost κj and
maximum willingness to pay p̄j, but decreasing in demand-weighted shopping effort s̄j.
Figure 2a illustrates this result graphically.

Proposition 2 The mean of the posted price distribution µFj is strictly increasing in
marginal cost κj and maximum willingness to pay p̄j, but strictly decreasing in demand-
weighted search effort s̄j for 0 < s̄j < 1, i.e.

(i) ∂µFj
∂κj

> 0, (ii) ∂µFj
∂p̄j

> 0, (iii) ∂µFj
∂s̄j

< 0.

Proof. Follows from taking first derivatives of µFj . ■

The effect of shopping on the average price posted operates through changes in profit
margins over marginal cost κj, which are strictly decreasing in equilibrium shopping effort(
∂(µFj −κj)

∂s̄j
< 0
)
. Higher demand-weighted shopping effort increases the price elasticity a

seller faces. An increase in s̄j makes it more likely that the average buyer observes
a second price, and hence tilts sellers’ tradeoff between higher margins and retaining
market share in favor of the latter.

In the limit, the setup approaches two well known special cases: If all buyers observe
two prices simultaneously (s̄j = 1), retailers solve a Bertrand competition problem and
post marginal cost (µFj = κj). If no buyer observes two prices simultaneously (s̄j = 0),
all retailers have a monopoly for any buyer they meet and extract buyers maximum
willingness to pay (µFj = p̄j). Households’ shopping effort determines a market’s position
between these two extremes by regulating the price elasticity retailers face.

Together with the effect of (changes in) demand composition on s̄j described above, the
relationship between the average price posted µFj and demand-weighted effort captures
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the mechanism at the heart of this paper: If a larger share of demand is accounted
for by low-search households, retailers face a lower average price elasticity (lower s̄j) and
optimally post higher prices (markups). This is how taking into account retailers’ optimal
response to changes in demand composition yields equilibrium effects of heterogeneity in
shopping effort on posted prices.

(a) Mean (b) Skewness

Figure 2: Moments of the Posted Price Distribution
Note: Theoretical moments of the posted price distribution Fj(p) as a function of demand-weighted
shopping effort s̄j , for different values of marginal cost κj and maximum willingness to pay p̄j .

The theoretical relation between demand-weighted shopping effort s̄j and the skewness
of the price distribution provides a sharp, empirically testable prediction of the response
of posted prices to households’ shopping effort. As shown in Proposition 3 below and
highlighted graphically in Figure 2b, the skewness of the posted price distribution is
a function only of demand-weighted shopping effort s̄j and independent of parameters.
Furthermore, it is strictly increasing in s̄j.

Proposition 3 The skewness of the posted price distribution γFj is strictly increasing in
demand-weighted search effort s̄j for 0 < s̄j < 1, but independent of marginal cost κj and
maximum willingness to pay p̄j, i.e.

(i) ∂γFj
∂κj

= 0, (ii) ∂γFj
∂p̄j

= 0, (iii) ∂γFj
∂s̄j

> 0.

Proof. Follows from taking first derivatives of γFj . ■

The intuition for this finding goes back to retailers’ indifference condition in equation
(3). Given a distribution of posted prices, an increase in demand-weighted search effort
increases sales of retailers with low prices and decreases them for retailers with high
prices, as households on average buy more at cheaper offers. This increases the benefit of
raising prices at the bottom and decreases the benefit at the top. To offset this effect and
keep retailers indifferent between posting low and high prices, the loss in market share
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when raising prices has to increase at the bottom and decrease at the top. This requires
the distribution of posted prices to be more dense at the bottom and less dense at the
top. A more (less) dense distribution increases (decreases) the number of competitors
that additionally undercut a retailer when raising prices marginally. A distribution that
is more dense at the bottom and less dense at the top exhibits higher skewness.

Robustness. Appendix A shows that the distribution of posted prices remains un-
changed when introducing free entry and fixed cost of operating and that under reason-
able calibrations heterogeneity in marginal cost leaves average prices decreasing and the
skewness increasing in shopping effort.4

3 Evidence on Shopping Effort and Price Distributions

This section provides empirical evidence on shopping effort across households and price
distributions across goods. First, I focus on how shopping effort changes with house-
holds’ expenditure to provide motivation for the quantitative model below. Second, I
test Proposition 3 empirically. I exploit differences in demand composition across goods
and evidence on households’ shopping effort to show that the skewness of price distribu-
tions indeed increases in demand-weighted shopping effort.

Data. For all empirical results I rely on data from the Nielsen Consumer Panel for
2007-2019. The dataset provides detailed information on the grocery purchases of ap-
proximately 60,000 US households per year, recording both quantities purchased and
prices paid for every store visit at the barcode level. In addition, the data contains an-
nual information on households’ demographic characteristics such as income, household
composition, employment, and the place of residence.5

3.1 Shopping Effort across Households

Studying how shopping behavior changes across households requires a measure of search
effort. The Nielsen dataset does not provide direct information on the time spent search-
ing for prices. I therefore rely on two proxies for households’ shopping effort. First, I
focus on the outcome of the search process – heterogeneity in the prices paid for identical
barcodes – and construct household level price indices in the spirit of Aguiar and Hurst
(2007). Second, I consider the number of stores households visit. Kaplan and Menzio
(2015) show that an effective way to reduce prices paid is to visit more stores or the same
store more often, controlling for the number of purchases.

4I focus on homogeneous marginal cost as they should be interpreted as wholesale cost and wholesale
price differentiation among retailers within a geographic area is prohibited in the US under the federal
Robinson-Patman Act and more commonly applied state legislations (e.g. Nakamura (2008)).

5Further information on the dataset is provided in Appendix B.1.
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Price Index. The total cost of household i’s consumption bundle in year t across all
barcodes j is

Xit =
∑
j

pjitcjit,

where pjit is the quantity-weighted average price paid by household i in year t for barcode
j and cjit is the respective quantity consumed. I further compute counterfactual cost X̃it

assuming the household pays the national, quantity-weighted average price across all
households p̃jt for each transaction of barcode j such that6

X̃it =
∑
j

p̃jtcjit.

A household’s price index is defined as the ratio between true and counterfactual cost

Pit =

(
Xit

X̃it

− 1

)
∗ 100.

It can be interpreted as the percentage difference in the cost of household i’s consumption
bundle in year t relative to paying average prices for each of the barcodes purchased.
A high index value indicates relatively high prices paid within barcodes and therefore
low shopping effort. The relationship between this price index and households’ overall
expenditure levels is not trivially positive: While higher prices on a given basket of goods
necessarily increase expenditure, high-spending households could in principle be buying
a larger basket but be paying less for each individual product. The size of the basket
is controlled for by normalizing the actual cost of consumption Xit by counterfactual
spending X̃it. I regress annual individual price indices on household (ηi) as well as year-
state (αst) fixed effects and controls (Zit)

Pit = ηi + αst + γZit + ϵit. (6)

The fixed effects control for all constant unobserved characteristics and for local economic
conditions at the year-state level. The vector Zit contains a set of time-varying observed
characteristics: Most importantly, I include the logarithm of annual grocery spending
to measure how shopping effort changes along the expenditure distribution. To control
for other variables commonly associated with shopping effort, I include dummies for
households’ taxable income between $30k-60k, $60k-100k, or above $100k (omitting the
category below $30k as baseline), the number of non-employed household heads (baseline
is no non-employed head), whether the (male) household head is of working age (25-

6I define p̃jt anually at the national level. An alternative, more restrictive definition that has been
commonly used in the literature defines average prices at the local and quarterly level. I show in Appendix
B.2 that this definition is subject to a small sample bias attenuating results. Nevertheless, findings based
on local average prices are qualitatively similar.
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65), and the square root of household size.7 Nielsen-provided household-level sampling
weights are applied throughout. Standard errors are clustered at the household level.

Table 1: Shopping Effort across Households

price index trips per purchase

(1) (2)

log(expenditure) 0.706∗∗∗ −0.042∗∗∗
(0.078) (0.001)

income 0.080∗ −0.001∗
30k-60k (0.046) (0.001)

income 0.178∗∗∗ −0.002∗∗
60k-100k (0.057) (0.001)

income 0.326∗∗∗ −0.002∗∗
>100k (0.070) (0.001)

1 non-employed −0.236∗∗∗ 0.002∗∗∗
household head (0.037) (0.000)

2 non-employed −0.422∗∗∗ 0.004∗∗∗
household heads (0.068) (0.001)

mean 0.15
FE year-state X X
FE household X X
Observations 801,398 801,398

Note: Regression of shopping effort on household characteristics. Column (1) index of individual prices
paid vs. national annual average price. Column (2) annual number of shopping trips divided by number
of purchases. Data from Nielsen Consumer Panel waves 2007-2019. Observations weighted with Nielsen
provided sample weights. Standard errors clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 1 reports selected results of estimating equation (6).8 It shows that a higher level
of household expenditures is associated with paying higher prices for identical goods. In
addition, prices paid increase in income and decrease in the number of non-employed
household heads. The findings suggest that households with higher spending or income

7Grocery expenditures are equivalence scale adjusted by dividing by the square root of household size
and deflated to 2019 USD with the urban CPI. Income is reported in the Nielsen dataset as a binned
variable and refers to the tax base of the previous year, i.e. household income two years prior to the
survey wave. To the extent that household income is persistent at a two-year horizon, it can be seen as
an approximation of households’ current income but is a noisy measure of the true value.

8Full results are reported in column (1) of Table 9 in Appendix B.2.
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and fewer non-employed household heads exert lower shopping effort. The results for
income and employment status are in line with the findings reported in the literature.9

The result on expenditure is novel.

The relation between expenditure levels and prices paid is sizeable, especially relative to
the relation between prices and income. A move from the lowest to the highest income
bin increases prices paid by 0.326 percent. Each income bin accounts for roughly 25%
of households, so a move from the lowest to the highest bin is approximately equivalent
to moving from the lowest to the highest income quartile. In comparision, doubling a
household’s grocery expenditures is associated with a 0.706 percent increase in prices for
the same barcode. The top expenditure quintile spends roughly five times as much as the
bottom quintile, translating the coefficient into a 2.8% difference in prices paid between
the bottom and top of the expenditure distribution.

Trips per Purchase. I define a shopping trip as a visit to a unique store at a unique
day. To control for the size of the consumption basket, I divide the number of annual
trips a household undertakes by the number of her purchases, where a purchase is defined
as a transaction involving a unique barcode in a given store on a given day. Column (2)
of Table 1 shows that the results obtained via the price index also hold when measuring
shopping effort as the number of trips per purchase: Households with higher expendi-
ture or income make fewer trips per purchase while households with more non-employed
members make more trips. Again the coefficient on households’ expenditure is sizeable:
The average number of trips per purchase is 0.15 (a household makes on average 6.67
purchases per shopping trip). Doubling a household’s expenditures reduces it by 0.042.

The strong relation between households’ shopping effort and expenditure levels is well in
line with a mechanism introduced in Pytka (2022). As households with higher expendi-
ture make more purchases, they have to search more often to achieve the same average
reduction in prices. Hence, reducing the average price paid becomes more costly as the
size of a household’s basket increases. I take the strong relation between spending levels
and households’ shopping behavior as motivation for developing a quantitative model
centered around households’ expenditure below.

3.2 Demand Composition and Price Distributions

Having identified dimensions of heterogeneity in shopping effort, I move on to an empirical
test of the relationship between shopping and posted price distributions. Testing for a
reduction in retailers margins in response to higher shopping effort would require data
on markups at the seller-good level. However, for a test of the relationship between the
skewness of price distributions and effort outlined in Proposition 3, it is sufficient to

9See e.g. Aguiar and Hurst (2007), Kaplan and Menzio (2016) and Pytka (2022).
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observe price distributions and demand-weighted shopping effort. Both are available in
the Nielsen dataset.

Demand-Weighted Shopping Effort. According to the theory outline in Section 2,
retailers should consider the shopping effort of households weighted by their share in
overall demand for the variety they sell. I exploit variation in demand composition across
products and compute for each barcode the national, annual expenditure shares stem-
ming from different groups of households, sorted by their shopping effort.10 Building on
the results above, I consider separately the five quintiles of the expenditure distribution,
four bins of household income, as well as the number of non-employed household heads.
To be in line with the predictions from Section 2 and the results on households’ shopping
behavior above, the skewness of price distributions should be decreasing in the expendi-
ture share coming from high-spending or high-income households, but increasing in the
share of demand from households with more non-employed heads.

Price Distributions. A price distribution consists of all transactions observed for a
barcode j, within a region r and time period t. In line with Kaplan and Menzio (2015), I
define a region as a Scantrack Market Area (SMA) and the time period to be a quarter.11

The price associated with a transaction is defined as the total amount paid less of coupon
values, divided by the quantity purchased. To control for outliers, I drop all transactions
for which the reported amount paid less of coupons is zero or negative. For the baseline
analysis, I consider all price distributions containing at least 25 transactions and compute
the skewness of each distribution weighting individual price observations with household
weights and quantities purchased.

Estimation. To test for the relationship between skewness and shopping derived from
theory, I regress the skewness of a price distribution (j, r, t) on the national expenditure
shares of each household group g, for variety j in the respective year y(t). I run separate
regressions defining groups based on expenditure quintiles, income bins, and the number
of non-employed household heads, excluding the lowest expenditure quintile, the lowest
income bin and households with no non-employed head respectively as a baseline. The

10I use annual and national shares as Nielsen is representative at this level. Using aggregate rather
than local shares is justified by the evidence on uniform price setting of large retail chains across locations
(see e.g. DellaVigna and Gentzkow 2019), making national rather than local demand composition the
relevant statistic for their price setting.

11The choice for what definition of a region and which time period to consider trades off between two
forces: A narrow definition ensures that any variation in prices can be confidently allocated to (and
exploited by) search frictions, while it also reduces the number of price observations per distribution
and hence makes the analysis more noisy. For the ensuing analysis to be valid it is not necessary that
households have access to every price within a region, but only that the distribution of prices is identical
for any subregion. As Scantrack Markets are defined by industry professionals as target regions for
marketing purposes, retailers pricing can be assumed to be sufficiently similar within such regions to
ensure identical price distributions throughout.
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specification is given in equation (7).

skewj,r,t = θm + µr,t +
G∑
g=2

βgsharej,g,y(t) + εj,r,t (7)

To control for local economic conditions and product characteristics, I include time-
region fixed effects (µr,t) as well as fixed effects for Nielsen-defined product modules
(θm). I do not control for barcode fixed effects to exploit variation in expenditure shares
across different barcodes.12 The included fixed effects demean the skewness by product
category and by region at a given point in time. Therefore, the coefficients of interest βg
are identified by the covariation of demand composition and differences in the skewness of
distributions among closely substitutable barcodes within a given region and period. All
regressions are weighted by the total amount of expenditures contained in the respective
price distributions. Standard errors are clustered at the barcode-year level.

Table 2: Demand Composition and the Skewness of Price Distributions

by expenditures by income by employment
all working age working age all
(1) (2) (3) (4)

expenditure −1.638∗∗∗ −1.467∗∗∗ income −0.136 1 non-employed 0.864∗∗∗
quintile 2 (0.242) (0.206) 30k-60k (0.133) household head (0.115)

expenditure −2.309∗∗∗ −2.076∗∗∗ income −0.824∗∗∗ 2 non-employed 1.011∗∗∗
quintile 3 (0.256) (0.221) 60k-100k (0.155) household heads (0.210)

expenditure −3.067∗∗∗ −2.582∗∗∗ income −0.820∗∗∗
quintile 4 (0.258) (0.219) >100k (0.139)

expenditure −3.412∗∗∗ −3.007∗∗∗
quintile 5 (0.253) (0.224)

FE product module X X X X
FE quarter-SMA X X X X
Observations 3,026,551 3,026,404 3,026,404 3,026,551

Note: Regression of the skewness of price distributions on demand shares by household groups. Price
distributions defined as all transactions of a barcode within a Scantrack Market Region and quarter.
Demand shares defined as the share of national annual spending on a barcode by each group of households.
Data from Nielsen Consumer Panel waves 2007-2019. Observations weighted by total sales in given price
distribution. Standard errors clustered at the barcode-year level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 2 reports the results. The skewness of price distributions is monotonically decreas-
ing in the share of expenditure stemming from higher spending households (column (1)).
The coefficients should be interpreted as the relative skewness compared to the omitted
baseline group. For column (1): If a barcode is bought entirely by households in the fifth

12Nielsen-defined product modules are the first level of aggregation above barcodes and capture product
characteristics at a granular level. Examples of product modules in Nielsen are e.g. “fresh apples” or “fresh
oranges” for different categories of fresh fruits.
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quintile of the expenditure distribution, the skewness of its price distribution decreases
by 3.4 relative to a barcode bought entirely by the first quintile. All differences w.r.t. the
baseline group are statistically significant at the 1%-level. The finding is robust to mea-
suring expenditure shares conditional on the (male) household head being between age
25-65 to account for spending patterns of student and retiree households (column (2)).
Similar findings pertain by income group, again conditioning on working age households
(column (3)). In addition, the skewness is monotonically increasing in the number of
non-employed household heads (column (4)). All specifications suggest one conclusion:
The skewness of price distributions decreases in the share of expenditure stemming from
low-effort households. This is well in line with Proposition 3 and provides strong evidence
in favor of the theoretical relationship between search effort and posted prices.

Robustness. In Appendix B.3, I report further robustness with respect to how the
skewness of price distributions is measured for the specification of column (1) of Table 2.
Table 10 in Appendix B.3 reports results without using weights in the regression, comput-
ing the skewness based on unweighted price observations, or based on household weights
only. All findings are robust to using alternative weighting schemes. The decrease of
skewness in expenditure is also robust when using Kelly’s measure of skewness, which is
less sensitive to outliers.13 As Table 11 in Appendix B.3 shows, results become quantita-
tively stronger if considering only price distributions with at least 50 or 100 transactions.
The robustness tests alleviate potential concerns that price distributions are constructed
based on transaction data sampled from households. As the findings are robust to not
weighting by quantities purchased and focusing on distributions with many transactions
(where each posted price has a better chance of entering the sample) it is unlikely that
households’ purchase behavior is driving the results.14

4 A Theory of Inequality and Price Dispersion

In Section 2 I have taken households’ choices as given to derive analytical results on how
posted prices respond to the choices of households. In equilibrium, households’ shopping
effort and consumption choices are themselves a function of the distributions of posted
prices. To account for this feedback between households’ choices and retailers’ price
posting, this section develops an equilibrium theory of expenditure inequality and price
dispersion and disciplines it against evidence from the Nielsen Consumer Panel.

13The units of the coefficients are not comparable for Kelly’s measure of skewness, so no statements
can be made about the relative magnitude of the results in column (2) of Table 10 in Appendix B.3.

14In future work, I plan to extend the analysis to the Nielsen Retail Scanner dataset providing infor-
mation on posted prices sampled directly from stores.
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4.1 Households with Non-Homothetic Preferences and Shopping

Households are infinitely lived and heterogeneous in their labor earnings zw. w is the
common wage rate per unit of labor and z households’ idiosyncratic labor productivity,
evolving exogenously according to a first order Markov process. Households supply z effi-
ciency units of labor inelastically. In addition, they earn a return r per unit of beginning
of period assets a. Households decide jointly on their future asset holdings a′, quantities
consumed of each variety j ∈ J of a grocery good {cj}Jj=1 and an outside (non-grocery)
good cO, and shopping effort s.

Households’ decision problem can be split into two stages. In a first stage a household
divides her resources between savings a′ and total expenditure e to solve

V (z, a) = max
e,a′≥0

U(e) + βEz′|zV (z′, a′)

s.t. e+ a′ ≤ (1 + r)a+ zw.
(8)

The utility of expenditure U(e) summarizes the second stage in which households decide
on their allocation of consumption across grocery varieties and the outside good as well
as their choice for shopping effort, conditional on expenditure. They solve

U(e) = max
s∈[0,1],{cj}Jj=1,cO

u(C)− v(s, C)

s.t. C = (cG)
α (cO)

1−α

cG =

[
J∑
j=1

(C)
qj
σ (cj)

σ−1
σ

] σ
σ−1

cO +
J∑
j=1

pj(s)cj ≤ e.

(9)

The outside good is taken to be the numeraire and its price is normalized to 1. u(·) are
households’ preferences over the consumption aggregator C and v (s, C) is the disutility
of exerting shopping effort. I assume that the disutility of effort depends on the level of
consumption C to capture in reduced form that households have to search more often for
prices if they have a larger consumption basket.15

Due to the two stage setup, the distribution of expenditures fully determines the dis-
tribution of shopping effort and consumption baskets across households. The structure
allows me to focus on data moments of the expenditure distribution when disciplining
households’ shopping and consumption policies below.

15This mechanism is micro-founded in Pytka (2022) who also provides evidence that conditional on
employment high-income households spend more time making purchases and rules out that this is due
to shopping as a leisure activity.
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Consumption Allocation. The aggregator C is a Cobb-Douglas function defined over
grocery and non-grocery consumption. Grocery consumption cG is itself a non-homothetic
CES aggregator over varieties j ∈ J in the spirit of Comin et al. (2021) and Handbury
(2021). For given total consumption C and shopping effort s, it defines a demand system
across varieties that can be characterized in terms of expenditure shares ωj, where the
optimal allocation satisfies

ωj
ωk

= Cqj−qk
(
pj(s)

pk(s)

)1−σ

.

Varieties should be considered close substitutes and can be thought of as different bar-
codes within a Nielsen defined product module. I focus on this low level of product
differentiation as a significant degree of non-homotheticities occurs at this granular defi-
nition of a variety.16 The parameters {qj}Jj=1 govern the expenditure elasticity of demand:
With C increasing in expenditures, the relative expenditure share of variety j vs. variety
k
(
ωj

ωk

)
is increasing in total spending e iff qj > qk. In line with the literature’s inter-

pretation of more expensive varieties among close substitutes as higher quality products,
I will refer to varieties with a high qj as high-quality.17 Under this interpretation, the
non-homotheticities considered arise because high-spending households have a stronger
taste for quality.

The price of the optimal grocery consumption bundle (of one unit cG) is given as

pG(C, s) =

(
J∑
j=1

Cqj (pj(s))1−σ
) 1

1−σ

.

The Cobb-Douglas aggregator C implies optimal shares of expenditures on groceries eG
and the outside good eO given by

ωG =
eG
e

=
pG(C, s)cG

e
= α and ωO =

eO
e

=
cO
e

= 1− α.

For given shopping effort s and expenditure level e the consumption aggregator is a
solution to the non-linear equation

C =
e

P (C, s)
, (10)

16In Appendix B.4 I compared consumption baskets along the expenditure distribution in the Nielsen
data and show that significant non-homotheticities arise when defining a product as a barcode as com-
pared to aggregating goods at the product module level. This is in line with e.g. Jaravel (2019).

17See e.g. Bils and Klenow (2001), Bisgaard Larsen and Weissert (2020), or Argente and Lee (2021).
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where the price index associated with C is given as

P (C, s) =
(
pG(C, s)

α

)α(
1

1− α

)1−α

.

Shopping Effort. The price a household pays for any variety j of the grocery good is
a function of her shopping effort. Households’ optimal choice of shopping effort equates
the marginal benefits of shopping with the marginal disutility of exerting effort such that

−vs(s, C)︸ ︷︷ ︸
marginal disutility

of shopping

=
∂pG(C, s)

∂s
cG︸ ︷︷ ︸

change
in BC

(1− α)
C
cO

[u′(C)− vC(s, C)]︸ ︷︷ ︸
marginal benefit
of relaxing BC

. (11)

The benefit of shopping is the change in the budget constraint times the marginal utility
of additional available resources, here expressed as the marginal utility of consuming one
more unit of cO.18 Increasing shopping effort reduces the cost of consumption and relaxes
the budget by ∂pG(C,s)

∂s
cG, where the change in the price index depends on households’

consumption basket and the return to shopping for each variety. It is given by

∂pG(C, s)
∂s

= pG(C, s)σ
J∑
j=1

Cqj (pj(s))−σ
∂pj(s)

∂s︸ ︷︷ ︸
return to
shopping

.

The relationship between prices and shopping effort, i.e. the return to shopping effort
∂pj(s)

∂s
, is an equilibrium object and depends on the distribution of posted prices.

4.2 Equilibrium in the Goods Market and Return to Shopping

Production. All grocery varieties and the outside good are produced and sold to retailers
at marginal cost by fully competitive production firms. Producers operate linear tech-
nologies with labor N as the single input factor. I assume production functions yO = NO

and yj =
1
κj
Nj, so that with the outside good as the numeraire the equilibrium wage is

determined as w = 1 and the marginal cost of producing a unit of variety j is given by
κj. In line with Kaplan and Menzio (2016), I assume that households can transform the
outside good into groceries of variety j at a rate 1

p̄j
implying a maximum willingness to

pay p̄j to purchase variety j from a retailer. Households’ assets are invested in a risk-free
bond at exogenous interest rate r. Under these assumptions, the model outcomes can
be interpreted as the equilibrium of a small open economy or as the equilibrium in a
subregion (state) of a large economy like the US.

18At the optimal solution, marginal utility could also be expressed in terms of spending the additional
unit of available resources on any of the grocery varieties or the composite grocery good cG.
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Market Structure. The outside good is traded in a perfectly competitive market and
its price is independent of shopping effort, whereas all varieties of grocery consumption
are sold in markets that are subject to search frictions. There is a separate search market
for each grocery variety j. The distribution of posted prices for each variety Fj(p) is
determined by the optimal price posting of a mass of single-variety retailers. As before,
retailers post prices for variety j given equilibrium search effort s̄j, marginal cost κj and
maximum willingness to pay p̄j. I deviate from the setup laid out in Section 2 and assume
that a retailer selling variety j is subject to a per period fixed cost of operation Kj and
the mass Mj of active retailers selling variety j is determined by free entry. Profits of
posting price p in the market for variety j are given by

π̃j(p) =
Cj
Mj

[(1− s̄j) + s̄j2(1− Fj(p))] (p− κj)−Kj =
πj(p)

Mj

−Kj,

where πj(p) is retailers’ profits of posting p in the version of the model without fixed cost
of operating and a given mass one of retailers as outlined in Section 2. Appendix A.1
proves that this setup yields a distribution of posted prices equivalent to the one derived
in Section 2, while the mass of entrants Mj ensures that π̃j(p) = 0, i.e. retailers make
zero profits in equilibrium. Beyond ensuring zero profits, Mj and Kj do not influence
equilibrium allocations and only their product is uniquely determined by πj(p) = MjKj

for any p on the support of Fj(p).

Return to Search. To determine the relationship pj(s) between prices paid for variety
j and households’ shopping effort, I follow Pytka (2022). The distribution of effective
prices for a single purchase of variety j when exerting shopping effort s is given as

Gj(p|s) = (1− s)Fj(p) + s(1− (1− Fj(p))
2).

The assumptions that households split their total demand for each variety into a contin-
uum of purchases and that every price observation is an i.i.d. random draw from Fj(p)

ensure that there is no uncertainty about the total cost of purchasing a quantity cj. Pytka
(2022) shows that the average price paid per purchase of variety j is

pj(s
i) = EGj [p|si] = µFj − si

(
µFj − EFj [min{p′, p′′}]

)
, (12)

such that
∂pj(s

i)

∂si
= −

(
µFj − EFj [min{p′, p′′}]

)
= const. < 0.

The two constants µFj and ∂pj(s
i)

∂si
< 0 are sufficient statistics to capture the impact of the

price distribution of variety j on households’ behavior, i.e. all that households need to
know to decide on their demand for each variety and their shopping effort. This feature
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simplifies the computational solution of the model significantly as households do not need
to keep track of the entire price distribution. It also suggests that matching the average
price and a measure of price dispersion across varieties is sufficient to discipline pj(si), as
the dispersion of prices is closely related to the equilibrium object ∂pj(s

i)

∂si
.

Equilibrium. A stationary equilibrium in the economy consists of households’ value
function V (z, a), consumption policy functions

{
cO(z, a), {cj(z, a)}Jj=1

}
, shopping policy

s(z, a), expenditure policy e(z, a) and savings policy a′(z, a), the induced distribution
of households across states λ(z, a), aggregated demand {Cj}Jj=1 and demand-weighted
shopping effort {s̄j}Jj=1 for each variety, posted price distributions {Fj(p)}Jj=1 and implied
pricing functions {pj(s)}Jj=1, where

(i) Given {pj(s)}Jj=1, households’ value and policy functions solve (8) and (9).

(ii) The distribution of households is a stationary solution to the law of motion

λ(z′, a′) =

∫ ∫
λ(z, a)Pr(z′|z)1a′=a(z,a) dz da.

(iii) Aggregated demand for variety j is given by

Cj =

∫ ∫
λ(z, a)cj(z, a) dz da.

(iv) Demand weighted shopping effort for variety j is given by

s̄j =

∫ ∫
λ(z, a)cj(z, a)

Cj
s(z, a) dz da.

(v) Given {s̄j}Jj=1, the posted price distributions {Fj(p)}Jj=1 solve (4).

(vi) Given {Fj(p)}Jj=1, the pricing functions {pj(s)}Jj=1 satisfy (12).

4.3 Calibration

I calibrate the model at annual frequency. The calibration proceeds in three steps: I first
calibrate the income process outside of the model, describe functional forms and set some
parameters exogenously, and finally calibrate all remaining parameters to match targets
on expenditure composition, price dispersion, and macro aggregates.

Income Process. The process for idiosyncratic productivity is the same as in Ferriere
et al. (2022) and Mendicino et al. (2022). I assume an AR(1) with innovations from a
Gaussian mixture, to capture higher moments of income risk as reported e.g. in Guvenen
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et al. (2021). I target the cross-sectional variance of income, as well as moments of the
distribution of income changes. Data targets are obtained from De Nardi et al. (2020).
Details on the calibration of the income process are delegated to Appendix C.1.

Functional Forms and External Parameters. I assume CRRA preferences for u(·)
and a disutility of shopping effort as a function of the consumption aggregator C such
that

u (C) = C1−ϕ − 1

1− ϕ
and v (s, C) = ψ1Cψ2

s2

1− s
.

The term s2

1−s ensures that households will prefer an interior solution for s.19 I restrict
ψ1 > 0 and ψ2 > 0 to obtain a disutility of effort increasing in C and capture the need to
search more often for prices when making more purchases. In this spirit, ψ2 determines
the economies of scale in shopping effort.

The calibrated version of the model features three varieties (levels of quality), i.e. J = 3.20

In line with the evidence on low-level elasticities of substitution sampled in Jaravel and
Olivi (2021), I set σ = 2. Furthermore, I normalize the medium quality to q2 = 0 and
marginal cost of the lowest quality to the outside good, i.e. κ1 = 1. The CRRA parameter
is set to ϕ = 2 and the annual real interest rate to r = 0.02.

Based on Broda and Parker (2014), I set α = 0.35 to the share of non-durable and
services consumption covered by the Nielsen dataset. This is a conservative choice, as
search frictions and price dispersion can be expected to matter beyond the products
covered by Nielsen. Without data for additional product categories, I restrict the search
friction to the share of goods covered in Nielsen. Under this assumption, I interpret
all results on overall consumption C and welfare as a lower bound on the consequences
of shopping frictions for inequality and report results based on grocery consumption cG

separately as an approximation for an economy with α = 1.

Internal Parameters. The remaining parameters to be calibrated are (ψ1, ψ2, κ2, κ3,

p̄1, p̄2, p̄3, β, q1, q3). As they do not influence allocations, I do not need to account for the
fixed cost Kj in the calibration. I impose q1 = −q3 and p̄j = a+ b(κj − κ1). This leaves
eight parameters for which I target eight moments, divided into three groups.

At the aggregate level, I target a wealth-to-income ratio of 3. While all parameters
can influence all moments, the one most closely linked to the wealth to income ratio is
β. Furthermore, I target an average retail markup of 1.39, computed based on the US

19It yields v (0, C) = 0, v (1, C) = ∞, vs (0, C) = 0, vs (1, C) = ∞. Under these assumptions households
optimally choose 0 < s < 1 iff ∂pj(s

i)
∂si < 0. An interior solution for s facilitates the computational

solution of the model.
20Considering versions of the model with 4 or 5 varieties does not alter the conclusions drawn below.
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Census’ Annual Retail Trade Survey.21 This value lies within the set of results reported
for retail markups in the literature, ranging from 1.31 (Sangani 2022) to 1.45 (Hall 2018).
The aggregate markup is closely related to ψ1, which governs average shopping effort and
hence the average price elasticity of demand across retailers.

Table 3: Calibration Targets and Model Fit

Target Data Model Source

basket overlap (Q1 vs. Q5) 63.28% 63.76% Nielsen (2007-2019)
∆p across varieties (Q1 vs. Q5) 7.2% 7.2% Nielsen (2007-2019)
∆p within varieties (Q1 vs. Q5) 2% 2% Nielsen (2007-2019)
mean(CoVj) 0.1920 0.1915 Nielsen (2007-2019)
CoV2 − CoV1 -0.0120 -0.0078 Nielsen (2007-2019)
CoV3 − CoV1 -0.0203 -0.0211 Nielsen (2007-2019)
average markup 1.39 1.39 ARTS (2007-2019)
wealth/income 3 3

Note: Results of the internal calibration of (ψ1, ψ2, κ2, κ3, p̄1, p̄2, p̄3, β, q1, q3).

A second set of moments targets price dispersion across varieties. These moments are
closely related to the return to search. Capturing the right returns to search across vari-
eties (and therefore across consumption baskets) is important for the correct identification
of the elasticity of shopping to expenditures. Targets for price dispersion are computed
from the Nielsen Consumer Panel based on the same definition of a price distribution as
in Section 3.2, i.e. pooling transactions for a given barcode within a Scantrack region and
a quarter. To account for differences in the average price across barcodes in the data, I
focus on the coefficient of variation (CoV).22 I target the expenditure-weighted average
CoV across all price distributions. In addition, I run a regression of the CoV on demand
composition by barcode as specified in equation (7) for the skewness, including on the
right-hand side the quintiles of the expenditure distribution. I target the implied differ-
ences in the CoV across varieties based on the endogenous demand composition (spending
shares across quintiles) in the model. Targets for price dispersion interact most closely
with the values for p̄j relative to κj.

The final set of moments contains targets on expenditure composition across households,
again measured from the Nielsen data. This set of targets is particularly important as
it identifies the elasticities of consumption baskets and shopping effort to households’
expenditure and with them the main mechanism of this paper. To discipline how con-
sumption baskets change across households, I target the (dis)similarity in expenditure

21I use data for 2007-2019 and take sales divided by purchases net of the change in inventories for food
and beverage stores, health and personal care stores, and general merchandise stores as the categories
most closely reflecting the retailers covered in Nielsen. I weight markups across categories by total sales.

22Targeting the coefficient of variation is equivalent to normalizing all prices by the mean and com-
puting the standard deviation of normalized prices as e.g. in Kaplan and Menzio (2015).
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Table 4: Calibrated Parameter Values

Parameter Value Notes

J 3
σ 2.0 Jaravel and Olivi (2021)
α 0.35 Broda and Parker (2014)
ϕ 2.0
r 0.02

qj [−0.67 0 0.67]
ψ1 0.0023
ψ2 0.21
κj [1 1.06 1.219]
p̄j [2.55 2.65 2.90] 2.55 + 1.6(κj − κ1)
β 0.9232

Note: Summary of calibrated parameter values. (J, α, σ, ϕ, r) are set externally. (ψ1, ψ2, κ2, κ3,

p̄1, p̄2, p̄3, β, q1, q3) are calibrated internally.

shares ωj at the barcode level between the first and the fifth quintile of the expenditure
distribution. For this purpose, I interpret the vector of expenditure shares for a group
of households as a discrete distribution over the universe of available varieties (barcodes)
and measure the similarity between two such distributions as the histogram overlap. Full
details on the construction of this target are provided in Appendix B.4. The barcode-level
overlap between consumption baskets at the bottom and top of the expenditure distri-
bution is about 63%. In addition, I target the annual savings as a share of respective
grocery expenditure of households at the bottom quintile of expenditures relative to the
top quintile, due to (i) buying similar varieties that are cheaper on average and (ii) paying
less for identical varieties. I measure (i) as the difference between the per-unit average
prices of a barcode and the per-unit average price of all barcodes within a Nielsen product
module. (ii) is measured as the difference in the price a household pays for a barcode to
the average price for this barcode across all households. More details on the construction
of these targets are provided in Section 5.1. Price differences across varieties reduce ex-
penditures of the bottom relative to the top quintile by 7.2% and price differences within
varieties by 2.0% of annual spending. Given the returns to search across varieties (and
consumption baskets) identified by the moments on price dispersion, the difference in
prices paid for identical varieties identifies ψ2, which governs the shape of households’
shopping policy along the expenditure distribution. The overlap in consumption baskets
and price differences across varieties interact closely with relative expenditure elasticities
qj as well as κj and p̄j across varieties.

A description of the algorithm applied to solve the model is delegated to Appendix C.2.
Table 3 summarizes all targets and shows that the model is able to match the moments
considered. Table 4 reports the calibrated parameter values. Noteworthy is the fact that
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the calibration yields ψ2 < 1. This value implies increasing returns to scale in shopping
effort as the utility cost of exerting a given effort s increases less than one-for-one with
the consumption aggregator C.

4.4 Model Properties and Validation

Policy Functions. The policy functions implied by the first stage spending-savings
problem are standard, expenditures and future asset holdings are increasing in disposable
resources (zw+(1+r)a) and the expenditure policy is concave. Figure 3 displays selected
policy functions for the second stage problem of choosing shopping effort and allocating
spending across goods. It shows that shopping effort is decreasing and mildly convex in
households’ total expenditure e and that households with higher expenditures allocate a
larger share of their consumption basket to varieties with higher quality (higher elasticity
qj) due to their non-homothetic preferences.23

(a) Shopping Policy (b) Grocery Expenditure Shares

Figure 3: Shopping Effort and Consumption Baskets
Note: Model implied shopping effort s and expenditure shares ωj across grocery varieties j as a function
of total household expenditure e. Expenditure shares are computed as total spending of a household on
variety j divided by her total grocery expenditures eG = αe.

Demand Composition. Table 5 shows that the non-homotheticity in households’ pref-
erences leads to significant differences in demand composition across grocery varieties.
While households in the bottom quintile of the expenditure distribution account for
11.38% of the spending on the low quality variety, they account for only 2.49% of spend-
ing on the high quality variety. On the other hand, households in the top quintile of
the expenditure distribution account for 51.45% of spending on the highest quality va-
riety but only 26.42% on the lowest quality variety. Intuitively, each household is more
important for the demand of varieties in her own consumption basket.24

23The policy function for non-grocery consumption follows trivially from cO = (1− α)e.
24Tabel 15 in Appendix C.5 shows this both for the model and the data. For a more formal discussion

of how to measure this in the data refer to Appendix B.4.
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Table 5: Demand Composition of Grocery Varieties

quintile of expenditures
Q1 Q2 Q3 Q4 Q5

low quality (q1) 0.1138 0.1752 0.2107 0.2360 0.2642
medium quality (q2) 0.0555 0.1228 0.1838 0.2521 0.3859
high quality (q3) 0.0249 0.0770 0.1432 0.2405 0.5145

Note: Model implied demand shares by varieties of the grocery good and expenditure quintile. Demand
shares are computed as total sales of variety j to quintile g divided by total sales of variety j.

Price Distributions. Table 6 provides summary statistics for the model generated price
distributions. In line with households’ shopping policy and the demand composition
across varieties, demand-weighted shopping effort s̄j is decreasing in quality qj. The
average price paid µGj is lower than the average price posted µFj for each variety due
to households’ search for cheaper offers. The standard deviation of posted prices σFj
increases with qj and so does the return to search (i.e. ∂pj(s

i)

∂si
is more negative). This

implies that high-spending households exert lower search effort despite a higher return
to search for their consumption basket.

Table 6: Price Distributions of Grocery Varieties

quality of grocery variety
low (q1) medium (q2) high (q3)

demand-weighted shopping effort s̄j 0.76 0.73 0.71
average price posted µFj 1.49 1.60 1.83
average price paid µGj 1.38 1.48 1.71
standard deviation of posted prices σFj 0.30 0.31 0.33
return to search ∂pj(s

i)

∂si
-0.15 -0.16 -0.17

skewness of posted prices γFj 1.51 1.42 1.33

Note: Summary statistics of model implied price distributions for each grocery variety j.

The skewness of price distributions decreases in the demand share of high spending house-
holds, qualitatively in line with the empirical results in Section 3.2. The differences in
skewness generated by the model can account for one third of the differences predicted by
the empirical results based on the model implied demand composition. The lower mag-
nitude is of little concern for the results below, as by construction of the pricing function
pj(s) households’ choices are determined by the first two moments of a distribution.

Inequality. Table 7 reports the distribution of total disposable income in the model
(zw + ra) as well as data on total household income after taxes and transfers from the
Congressional Budget Office (CBO). The model generates realistic inequality in income.
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Table 7: Income Distribution – Model vs. Data

quintile of post-tax income
Q1 Q2 Q3 Q4 Q5

Model 5.02% 10.50% 15.78% 23.89% 44.79%
Data 6.44% 10.91% 14.70% 20.31% 47.65%

Note: Fit of the model implied income distribution. In the model, income is measured as labor and
financial income (zw+ ra). Data moments for household income after taxes and transfers from Congres-
sional Budget Office (CBO) for 2007-2018.

Due to the two-stage setup of the household problem, shopping effort and the allocation
of consumption across varieties are determined conditional on expenditure e. Matching
the distribution of expenditures therefore ensures a realistic distribution of shopping
and consumption policies in the model. Figure 4 plots the model implied distribution
of grocery expenditures along with its equivalent from the Nielsen dataset. While the

(a) Density (b) Cumulative Density

Figure 4: Distribution of Grocery Expenditures – Model vs. Data
Note: Fit of the model implied distribution of grocery expenditures eG = αe. Model and data dis-
tributions normalized to mean 1 and sorted into 50 equally spaced bins between 0 and the maximum
expenditure level. Data from Nielsen Consumer Panel 2007-2019. Household-level grocery expenditures
are equivalence scale adjusted and deflated with the Urban CPI to 2019. I winsorize the top 1% of data.

calibration targets include moments of the labor earnings process and match the empirical
overlap in consumption baskets, as well as price differences within and across varieties, the
dispersion in households’ expenditure is not included in the calibration. Nevertheless, the
model does remarkably well in capturing the empirically observed distribution of grocery
expenditures. This finding provides confirmation that the model is a suitable framework
for studying the relationship between expenditure inequality and posted prices.
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5 Implications for Expenditure Inequality

5.1 Price Differences across Households

Before studying the consequences of shopping effort for inequality, I quantify price differ-
ences across and within varieties along the expenditure distribution. To make the model
and data comparable along this dimension, I focus on the contribution of price differ-
ences relative to expenditure and provide a novel decomposition of households’ grocery
spending.

The first step of a price-based decomposition of expenditure inequality in the data is
to make per-unit prices comparable across products. Therefore, I sort all barcodes into
groups of similar products, defining a group as all items within a Nielsen product module
measured in the same unit, and normalize prices and quantities by the size of a product.25

Total annual grocery expenditure eGi for a given household i is the sum of spending eGijk
over all barcodes j in all groups k. Spending per barcode is the quantity-weighted average
per-unit price paid by the household for barcode j in group k pijk times the units consumed
cijk. Further, define p̂jk as the quantity-weighted average price paid for variety j across
all households and p̃k as the average of p̂jk within group k. For example, for the module
“fresh apples” measured in pieces p̃k is the average price per apple across all households
and all barcodes of apples, p̂jk the average price for one specific type of apple across
households, and pijk the average price one specific household pays for one specific type of
apple. In the model, I consider a single (representative) group k and all three varieties j
as close substitutes of identical size within that group. Decompose eGi as

eGi =
∑
k

∑
j∈Jk

eGijk =
∑
k

∑
j∈Jk

pijkcijk

=
∑
k

∑
j∈Jk

(pijk − p̂jk)cijk︸ ︷︷ ︸
within varieties

(direct effect of shopping)

+
∑
k

∑
j∈Jk

(p̂jk − p̃k)cijk︸ ︷︷ ︸
across varieties

+
∑
k

∑
j∈Jk

p̃kcijk︸ ︷︷ ︸
quantities

.

The first term captures price differences within identical products between what an in-
dividual household pays relative to other households. In the model, this is driven by
differences in the direct effect of shopping on reducing the average price per unit given
the posted price distribution. The second term captures differences across products, due
to heterogeneity in consumption baskets. In line with the interpretation of demand elas-
ticities qj, the literature has referred to these differences in the average price across close

25E.g. I group together all barcodes in the module “fresh apples” that are measured in pieces and
divide the price of each barcode by the number of individual apples included to get a price per apple.
Most product modules have one dominant unit of measurement and there is no systematic difference in
purchases across households in the unit dimension as Appendix B.4 shows.
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substitutes as quality (e.g. Argente and Lee 2021; Bisgaard Larsen and Weissert 2020;
Jaimovich et al. 2019). The last term summarizes households’ counterfactual expenditure
absent any price differences within or across products, where all variation of expenditures
within a group k is due to differences in the quantity consumed.

Figure 5a shows the results of the empirical decomposition by quintile of the expenditure
distribution, expressed as a fraction of grocery expenditure. Households at the bottom of
the distribution have about 5.5% lower expenditure due to deviations from the average
price p̃k within module-unit bins. 1.5pp. are due to lower prices within products, i.e.
driven by the direct effect of shopping effort. 4pp. are due to lower prices across the
products bought. At the top of the distribution, price differences increase total spending
by 4%, 3.5pp. of which due to differences across products. In between, the contribution of
price differences within and across products is monotonically increasing in expenditure.
The reported magnitudes are well in line with the findings of e.g. Aguiar and Hurst (2007)
and Bisgaard Larsen and Weissert (2020) under alternative approaches.

(a) Data (b) Model

Figure 5: Price Differences along the Expenditure Distribution
Note: Price differences by expenditure quintile in the model and data, as a share of households’ grocery
spending. “Within variety” refers to differences between the price paid by a given household and the
average price for a given product (direct effect of shopping), while “across varieties” is the difference
in average prices across different products. Data from the Nielsen Consumer Panel 2007-2019. In the
data, the price within products is computed by barcode and the price across products is computed across
barcodes within a product module (by unit of measurement).

We can interpret these findings in terms of their contribution to expenditure inequality.
Inequality is often measured as a ratio between the top and the bottom of the distribution
(e.g. Aguiar and Bils 2015). Define ẽGi =

∑
k

∑
j∈Jk p̃kcijk as a household’s counterfactual

grocery spending absent price differences within and across products. The results of
Figure 5a imply that price differences within and across varieties can account for 10% of
expenditure inequality between the top and bottom quintile. I.e. expenditure inequality

31



measured as the ratio of counterfactual expenditure ẽG between the top to bottom quintile
of the expenditure distribution is about 10% lower compared to true expenditure eG.26

Figure 5b shows that the model is able to reproduce the empirical patterns. It is important
to note that only the differences within and across varieties between the lowest and highest
quintile are included in the set of targeted moments. The model does well at reproducing
the levels and slope of both margins along the entire expenditure distribution.

Robustness. Table 12 in Appendix B.5 provides estimates from a regression of the
contribution of price differences within and across barcodes on households’ expenditure
and controls to show that their relationship is robust to other household characteristics.27

5.2 Equilibrium Effects of Shopping on Inequality

While the previous section provides descriptive evidence on how prices contribute to ex-
penditure inequality, interpreting their contribution to real inequality requires one further
step. Price differences across households can be either due to differences in marginal costs
for the products bought or due to differences in the margins paid. It is important to dis-
tinguish between the two. While a higher marginal cost cannot be avoided to purchase a
preferred good, a higher margin implies that it would be feasible to achieve the same con-
sumption allocation with lower expenditures. Higher margins reflect the cost imperfect
competition in the product market imposes on households. While I cannot distinguish
between marginal cost and margins in the data, the model allows me to disentangle them.

Direct and Equilibrium Effect of Shopping. In the previous decomposition, dif-
ferences in prices within varieties are entirely due to margin differences. They capture
the direct effect of differences in households’ shopping effort, paying less for an identical
product given the posted price distribution. However, differences in average (posted)
prices across varieties can be due to either marginal costs or average margins posted. As
Proposition 1 has shown, differences in average posted margins across varieties can be
attributed to the equilibrium effect of search frictions and shopping behavior on posted
prices. This effect operates through retailers’ response to demand-weighted shopping
effort s̄j, which changes across varieties due to the differences in demand composition in-
duced by non-homotheticities in households’ preferences. I therefore attribute differences
in average margins across varieties (p̂jk−κjk) to the equilibrium effect of shopping. This
leaves differences in marginal cost of variety j relative to the average marginal cost in

26Figure 17 in Appendix B.5 shows that this number increases to 12% when considering deciles.
27I include income, employment status, age, household size, household and year-state fixed effects.

To relate price differences within products to households’ shopping effort, I report again the evidence
on trips-per-purchase from Section 3.1. Running a regression of the price differences within and across
varieties on log-expenditure in the model slightly underpredicts the estimates from the data (0.68 vs.
0.95 for differences within and 2.5 vs. 3.4 across) but is consistent with the relative magnitudes.
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group k (κjk − κ̃k) to explain the remaining price gap across products. In line with the
interpretation of higher qj as quality, I will refer to this term as cost of quality. I adjust
the decomposition accordingly.

eGi =
∑
k

∑
j∈Jk

(pijk − p̂jk)cijk︸ ︷︷ ︸
within varieties

(direct effect of shopping)

+
∑
k

∑
j∈Jk

(p̂jk − p̃k)cijk︸ ︷︷ ︸
across varieties

+
∑
k

∑
j∈Jk

p̃kcijk

=
∑
k

∑
j∈Jk

(pijk − p̂jk)cijk + ((p̂jk − κjk)− (p̃k − κ̃k))cijk︸ ︷︷ ︸
shopping (direct+equilibrium)

+
∑
k

∑
j∈Jk

(κjk − κ̃k)cijk︸ ︷︷ ︸
cost of quality

+
∑
k

∑
j∈Jk

p̃kcijk

Figure 6 presents the results for the adjusted decomposition alongside the original results
from Figure 5b. It shows that accounting for the equilibrium effect of search frictions
and differences in s̄j on margins across varieties more than doubles the contribution of
shopping to expenditure inequality, relative to the direct effect on price differences within
products. This makes the overall effect of shopping equally important as differences in
marginal costs across varieties. According to this decomposition, shopping alone through
its direct and equilibrium effects can account for 5% of inequality in household expendi-
tures between the bottom and top quintile of expenditures. This contribution is entirely
due to the consequences of imperfect competition and should therefore be seen as a re-
duction in real consumption inequality relative to expenditure inequality.

(a) Model (Original) (b) Model (Adjusted)

Figure 6: Price Differences along the Expenditure Distribution - The Effect of Shopping
Note: Price differences by expenditure quintile in the model, as a share of households’ grocery spending.
In the original decomposition, “within variety” refers to differences between the price paid by a given
household and the average price for a given product (direct effect of shopping), while “across varieties”
is the difference in average prices across different products. In the adjusted decomposition, “shopping”
refers to price differences within and margin differences across products (direct and equilibrium effect of
shopping) and “cost of quality” to differences in marginal costs across products.
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Consumption Inequality. The effect of heterogeneous shopping behavior on the rela-
tionship between expenditure and consumption inequality can be best understood by the
following thought experiment: Fix the distribution of expenditures and allow households
to optimally choose their consumption bundles assuming (i) all households pay the aver-
age price p̂jk for each variety or (ii) all households pay the marginal cost plus the average
margin κj+(p̃k− κ̃j) for each variety. The former eliminates the direct effect of shopping
on inequality. The latter additionally shuts down its equilibrium effect and is the sum of
the quantity term and the cost of quality above.

Figure 7a shows by how much grocery consumption would change on average within each
expenditure quintile under the alternative prices. Without the direct and indirect effect
of shopping, grocery consumption cG for the bottom quintile would be approximately
3% lower at identical expenditures and 2% higher for the top quintile. About half of the
difference can be attributed to the direct and equilibrium effect respectively. We can again
measure inequality as the ratio of top to bottom quintiles’ consumption. The findings
confirm that with identical inequality in grocery expenditures, inequality in consumption
would be approximately 5% higher without the direct and equilibrium effect of shopping.
The effect is muted when focusing on total consumption C in Figure 7b, as the outside
good is not subject to any search frictions. The result on C sets the lower bound for
shopping’s overall effect on consumption inequality to 1.5%. With similar search frictions
for all consumption, the overall effect would be close to the results reported for cG.

(a) Grocery Consumption (b) Total Consumption

Figure 7: Shopping Effort and Consumption Inequality
Note: Change in households’ grocery (cG) and total consumption (C) absent shopping effort. Coun-
terfactuals fix the expenditure distribution and let households choose a basket assuming they have to
pay (i) the average price within each grocery variety (shutting down the direct effect of shopping) or (ii)
marginal cost plus the average margin across varieties (shutting down the direct and equilibrium effect).

Welfare. The findings on consumption inequality do not take into consideration the
full consequence for households’ welfare, as they abstract from the disutility of shopping
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effort. To interpret the equilibrium effect of shopping in terms of welfare, I again fix the
expenditure distribution and compute the one-period utility for each household under
the assumption that no household exerts any search effort and all households (i) pay the
average prices p̂jk or (ii) pay the marginal cost plus average profit margins κjk+(p̃k− κ̃k)
for each variety. I then ask by how much consumption C in the alternative economy
would need to change to make a household with expenditure e indifferent between living
there for one period or living one period in the steady state economy.28 Formally, the
necessary change in consumption is defined as

∆CCF (e) =

(
U(e) + 1

1−ϕ

u (CCF (e)) + 1
1−ϕ

) 1
1−ϕ

− 1,

where U(e) is the steady state one-period utility of spending e, u(·) the CRRA utility
function, and CCF (e) the consumption level associated with spending e in one of the
counterfactual economies.

Figure 8: Welfare Effects of Shopping Effort
Note: Change in total consumption index (C) under alternative prices and zero shopping effort to make
a household indifferent between living one period in an alternative economy and one period in the steady
state economy. Counterfactuals fix the expenditure distribution and let households choose a basket
assuming they have to pay (i) the average price within each grocery variety (shutting down the direct
effect of shopping) or (ii) marginal cost plus the average margin across varieties (shutting down the direct
and equilibrium effect).

Figure 8 reports the results, averaging the consumption change within each expenditure
quintile. It shows that the bottom quintile of expenditures is almost equally well off
when paying average prices but not exerting shopping effort (shutting off the direct effect
of shopping). The cost of higher prices is offset by reducing the disutility of effort to
zero. The top quintile would forego 0.85% of consumption to face the average price paid
for a variety without exerting shopping effort. If households instead were to pay the

28Results for infinite horizon welfare measures are reported in Appendix C.3.
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average margin (shutting off direct and equilibrium effects), the bottom quintile would
need to receive an increase of 0.6% in their consumption to be indifferent to the steady
state, while the top quintile would forego up to 1.15% of consumption. These findings
imply that the direct and equilibrium effect of shopping jointly reduce inequality in (one-
period) welfare by 1.75%. 0.9pp. of the effect are attributable to the equilibrium response
of posted prices. Again, this is a lower bound as I restrict search frictions to groceries.

Externalities. As retailers’ price posting targets the average buyer in the market, each
agents’ search effort imposes an externality on the prices faced by all other households.
Non-homotheticities and the partial separation of demand into different varieties reduce
this externality. The model economy allows for a quantification of this reduction in
externalities and of the remaining externality due to the non-zero overlap in households’
consumption baskets. To do so, I construct counterfactual price distributions based on
alternative values of demand-weighted shopping effort s̄j across varieties.29

For a full pooling counterfactual, I assume demand-weighted effort s̄j is the same across
all varieties and let retailers post prices based on the average composition of demand. To
equalize s̄j across varieties, I compute the average shopping effort weighting individuals’
shopping policies with their share in total demand across all varieties such that s̄j =∫ ∫ λ(z,a)

∑J
j=1 cj(z,a)∑J

j=1 Cj
s(z, a) dz da. I fix households’ consumption baskets and shopping

policies at their equilibrium values and compute the percentage change in their cost of
consumption if they were drawing from the distributions retailers post when facing the
counterfactual s̄j for all varieties.30 The full pooling line in Figure 9 plots the results over
the range of the model implied expenditure distribution. If s̄j would be identical across all
varieties, households at the bottom of the expenditure distribution would spend around
2% more on their consumption bundle while households at the top could save around 1%
while buying the same basket, in line with the equilibrium effect of shopping.

Next, I allow households to draw from price distributions targeted to their individual
shopping effort. In this counterfactual a household in state (z, a) draws for each variety
from a price distribution that retailers’ would post if all other households were exerting
the same shopping effort, i.e. s̄j = s(z, a). In this counterfactual, I obtain full separation.
Figure 9 shows that the remaining externality is sizeable. Fixing shopping effort and
consumption baskets, households at the bottom of the expenditure distribution could
save an additional 18% if they were to face targeted price distributions, i.e. if retailers

29Sangani (2022) conducts a similar exercise in a model economy with a single good and, despite a
different calibration approach, finds similar magnitudes for the difference between the pooling and full
separation scenario. In addition, I provide a quantification of how much the externality is reduced due
to partial separation in the goods market, which is not possible in a single-good economy.

30The exercise can be interpreted as the change in a Laspeyres price index.
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Figure 9: Shopping Externality
Note: Change in households’ prices paid under alternative posted price distributions. Baseline is the
calibrated steady-state. Counterfactuals fix the expenditure distribution, consumption baskets and shop-
ping effort. Full pooling assumes price distributions for each variety determined as the best response to
average search effort s̄j =

∫ ∫ λ(z,a)
∑J

j=1 cj(z,a)∑J
j=1 Cj

s(z, a)dzda. Full separation assumes individually targeted

price distributions for each variety determined as the best response to individual search effort s̄j = s(z, a).

could perfectly discriminate between household types. The high-spending households on
the other hand would pay up to 12% more in a world with perfect discrimination.31

The large size of the remaining externality can be accounted for by the generally higher
spending levels at the top of the expenditure distribution. While high-spending house-
holds consume relatively less of the goods that are important in low-spending households’
baskets, they still account for a sizeable share of expenditures across all varieties due to
their higher level of expenditures.32

Overall, the findings show that differences in demand composition across goods and the
ensuing equilibrium effects of heterogeneity in shopping effort on posted prices have sub-
stantial implications for how we should interpret inequality in expenditures in terms of
consumption and welfare. The previous literature, such as Aguiar and Hurst (2007), Ar-
slan et al. (2021), and Pytka (2022), has focussed on how households can reduce the price
they pay for a given variety. The findings outlined above suggest that shopping provides
additional insurance of similar magnitued through the effect of low-income households’
collective search effort on the prices posted for the products they purchase.

31Retailers do not leave money on the table due to a lack of price discrimination. Holding households’
policy functions constant, the difference in total sales is less than 0.01% across scenarios. Lower profits
on low-search households are almost perfectly offset by higher profits on high-search households.

32Appendix B.4 shows that this is in line with the data.
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6 Implications for Average Prices and Markups

The relationship between demand-weighted shopping effort and posted prices makes the
average price and markup in the economy a function of the distribution of expenditure
across households. The distribution of households can change, e.g. when the economy is
hit by aggregate shocks or when policies change the economic environment. In this sec-
tion, I consider first how the response of posted prices to shopping effort has contributed
to price dynamics during the Great Recession and how shifts in demand composition
can affect the cyclicality of average retail prices and markups in general. In addition, I
provide evidence on how the response of posted prices to demand composition can affect
the cost of redistributive taxation for high-earning households.

6.1 Shopping and Prices over the Business Cycle

A growing empirical literature studies the cyclical properties of retail prices and markups
in response to aggregate demand shocks, but so far remains inconclusive. E.g. Anderson
et al. (2020) find acyclical prices and markups in response to local unemployment shocks
while Stroebel and Vavra (2019) find strongly procyclical responses to changes in local
house prices. I revisit these findings in the model economy by focussing on the Great
Recession period around 2008.

The Great Recession saw both substantial earnings losses due to an increase in unem-
ployment and losses in wealth in response to the decline in house prices. I construct a
similar shock and hit the model economy with an unexpected one-time loss in households’
net worth and persistent earnings losses differentiated by households’ labor productivity
state z. I choose an equal loss in wealth of 15% for all households, to match the decline
in households’ net worth between the last quarter of 2007 and first quarter of 2009 as
reported in the US Financial Accounts (Table Z.1).33 For losses in labor earnings along
the income distribution, I build on the findings of Heathcote et al. (2020). I take their
estimates for earnings changes at different points of the income distribution in 2008-2010
for the first three periods after the shock hits and let earnings return to their steady state
level by t = 6. A mapping of the findings in Heathcote et al. (2020) into the labor produc-
tivity states of the model is provided in Table 14 in Appendix C.5. It shows that losses
are heavily concentrated at the bottom of the earnings distribution. Overall, the two
components of the shock are comparable in magnitude. The decline in wealth amounts
to roughly 32% of aggregate annual income in the model economy and the cumulated
earnings loss to 24%.

33This choice is in line with the decline in wealth growth for the top two quintiles of the wealth
distribution (those households holding significant wealth) reported in Krueger et al. (2016).

38



To measure the cyclical properties of retail prices, I focus on a Laspeyres index of average
prices across grocery varieties, given by

P l
t =

∑J
j=1C

SS
j µljt∑J

j=1C
SS
j

.

The Laspeyres index abstracts from changes in households’ baskets when aggregating
prices and is therefore ideally suited to isolate prices changes. I will consider separately
changes in the Laspeyres index for two definitions of average prices per variety: average
posted prices P F

t and average prices paid PG
t . Throughout the exercises conducted in this

section I keep all parameters at their steady-state values. Any response of posted and paid
prices is therefore by construction driven by changes in households’ (demand-weighted)
shopping effort and its effect on posted and paid prices.

Figure 10: Prices Posted and Prices Paid during the Great Recession
Note: Model implied response of an aggregate Laspeyres index P l

t =
∑J

j=1 CSS
j µl

jt∑J
j=1 CSS

j

of prices posted (PF
t )

and prices paid (PG
t ) to the Great Recession shock (15% loss in wealth and earnings losses from Heathcote

et al. (2020)).

Figure 10 plots the response of the aggregate Laspeyres index of grocery prices, separately
for prices posted P F

t and prices paid PG
t . It shows that changes in households’ shopping

behavior reduced prices paid by about 0.7% during the Great Recession. This effect is
predominantly driven by a reduction in posted prices as retailers’ respond to households’
choices in equilibrium. Posted prices declined by 0.6 percentage points while changes in
paid prices relative to posted prices account for only 0.1 percentage points of the overall
decline in prices paid. Hence, taking into account the equilibrium effect on posted prices

39



in response to changes in demand-weighted shopping effort is quantitatively important
for fluctuations in retail prices during the Great Recession.34

Figure 11: Response of Posted Prices to Losses in Earnings and Wealth
Note: Model implied response of an aggregate Laspeyres index PF

t =
∑J

j=1 CSS
j µF

jt∑J
j=1 CSS

j

of prices posted to

the Great Recession shock (15% loss in wealth and earnings losses from Heathcote et al. (2020)). Full
shock decomposed into response to loss in earnings and loss in wealth.

Next, I study whether the change in the index of posted prices is driven by the decline
in wealth or losses in labor earnings. To isolate their respective effects on posted prices,
I hit the economy only with a loss in wealth or only with a loss in labor earnings. Figure
11 plots the response of the posted price index P F

t for each of the two components
separately and for the combined response. It shows that the response of posted prices
is almost entirely driven by the reduction in wealth, while retailers barely react to the
decline in earnings. With all parameters, including marginal cost κj, fixed at steady-state
levels, these price responses are driven entirely by changes in posted markups. Hence, the
model yields procyclical responses of retail prices and markups to the decline in wealth,
but acyclical responses to the change in labor earnings during the Great Recession. This
finding shows that the model can reconcile the conflicting empirical evidence presented
in Stroebel and Vavra (2019) and Anderson et al. (2020).35

34Despite the absence of any adjustment cost, the dynamics of the model are not inconsistent with
significant price stickiness. The price distribution for each variety on impact of the shock overlaps to
about 96% with its steady-state counterpart. Therefore, the model can be consistent with up to 96% of
retailers not adjusting their prices, as they are indifferent between any price on the support of the posted
distribution. This is in line with the findings of Burdett and Menzio (2018).

35The model also resonates with the literature quantitatively. Figure 23 in Appendix C.5 shows that
the decline in aggregate grocery prices (markups) paid in response to a 1% decline in households’ wealth
is about 0.04%. This elasticity is at the lower end but of similar magnitude as the range of estimates for
the elasticity of retail prices to house prices reported in Stroebel and Vavra (2019), who find values of
0.02-0.2. Assuming that most household wealth is held in real estate and that households’ have a levered
position in housing due to mortgages implies that a 1% wealth shock is a conservative choice to capture
the consequences of a 1% decline in house values.
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To understand the mechanism behind this result, I decompose the price response into the
forces shaping it in equilibrium. In the model, posted prices (markups) respond only to
changes in demand-weighted shopping effort

s̄jt =

∫ ∫
λt(z, a)cjt(z, a)

Cjt
st(z, a) dz da.

Demand weighted effort either changes because of adjustments in individual search effort,
or because changes in demand composition alter how retailers take the effort of different
households into account. The effect of individual search behavior is captured by the
response of s̄jt to changes in shopping policies st(z, a). Shifts in demand composition
arise due to changes in households’ consumption policies cjt(z, a) or the distribution of
households across the state space λt(z, a). I consider the contribution of each of the three
separately, fixing the others at steady state level.

Figure 12: Decomposition of Posted Price Responses
Note: Response of an aggregate Laspeyres index of posted prices PF

t =
∑J

j=1 CSS
j µF

jt∑J
j=1 CSS

j

to the Great

Recession shock (15% loss in wealth and earnings losses from Heathcote et al. (2020)). Panels report
responses to the full shock, only the wealth, and only the earnings component. Complete response as
a baseline, for each panel decomposed into the response to changes in consumption policies, shopping
policies, and the distribution of households, holding the respective others constant at steady state levels.

Figure 12 plots the decomposition of price responses separately for the full shock and
only the wealth and earnings component respectively. Changes in households’ shopping
policies alone reduce prices in response to both the wealth and earnings component, as
each affected household increases her search effort to insure against an income loss. What
accounts for the differences in cyclicality are differential responses of demand composition,
driven by changes in households’ consumption policies and the distribution of agents
across the state space. This is due to the incidence of the shocks, earnings losses being
concentrated among low income households and high-income households facing a larger
absolute decline in wealth.
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The stronger low-income households are affected the more they have to reduce consump-
tion and the lower becomes their share in overall demand. Retailers now face relatively
more high-income buyers and respond to this shift in demand composition by attaching
more weight to their (lower) shopping effort. In response, they increase prices. For the
earnings component, this demand composition effect is strong enough to offset the direct
increase in shopping effort. As high-income households are disproportionately affected by
the wealth component, the effect of changes in households’ consumption policies goes in
the opposite direction and reallocates relative demand towards low-income (high-effort)
households. In addition, high-income households significantly reduce their savings which
increases their future shopping effort as they have become relatively poorer. This effect
is captured by changes in the distribution of agents across the state space and drives the
response of prices to the wealth component from the second period onwards. In com-
bination of both components the change in households’ consumption policies dampens
the response of retail prices to the increase in individual shopping effort by about one
third, emphazising the quantitative importance of shifts in demand composition during
the Great Recession.36

The implications for inequality are in sharp contrast to the results of the previous sec-
tion. While heterogeneity in demand composition across varieties provides additional
insurance by reducing the prices charged on goods bought by low-income households,
shifts in demand composition over the business cycle amplify inequalities. High-earning
households are partially compensated through a decline in posted prices when they are
hit by an aggregate income loss. Low-earning households might see prices rise if they lose
income as retailers adjust posted prices to their declining share in aggregate demand.

The findings presented in this section extend the work of Kaplan and Menzio (2016) who
introduce demand composition effects in a model with two types of agents: Employed
and unemployed. In order to sustain multiple equilibria and self fulfilling unemployment
fluctuations, their framework requires a decline in aggregate income to be associated with
an increasing role for (high-search-effort) unemployed households and a resulting decline
in prices and profit margins for firms. The results derived in this paper from a framework
with rich household heterogeneity suggest that shifts in demand composition can dampen
or amplify the responses of retail prices to households’ shopping effort, depending on the
incidence of aggregate income shocks.

36Appendix C.4 provides additional evidence on the effect of demand composition on the cyclicality of
retail prices by simulating the same decline in aggregate income but distributing it differentially along
the earnings distribution. It shows that if losses are sufficiently concentrated among the bottom of the
distribution, retail prices can increase in response to a decline in aggregate earnings.
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6.2 Demand Composition Across Policy Regimes

When posted prices become a function of the distribution of income and wealth in the
economy, policies (re-)shaping these distributions affect households’ cost of consumption.
This section shows how posted prices respond to redistributive taxation. For that purpose,
I introduce a flat tax on earnings and redistribute the proceeds equally as a lump sum
payment to all households. Introducing the policy alters the budget constraint to

e+ a′ ≤ (1 + r)a+ (1− τ)zw + T,

where the government-budget-clearing transfer satisfies T =
∫ ∫

λ(z, a)zw dzda.37

I solve for the steady state of the model for given τ and compute the ensuing changes in
households’ earnings post taxes and transfers

∆earn(z,a) =
(1− τ)zw + T − zw

zw
=
T − τzw

zw

as well as changes in an individual Laspeyres index for total consumption P lasp(z, a)

∆P lasp(z, a) =
ẽτ (z, a)

e0(z, a)
− 1 =

c0O +
∑J

j=1 p
τ
j (s

0(z, a))c0j(z, a)

c0O +
∑J

j=1 p
0
j(s

0(z, a))c0j(z, a)
− 1

and grocery consumption plaspG (z, a)

∆plaspG (z, a) =
ẽτG(z, a)

e0G(z, a)
− 1 =

∑J
j=1 p

τ
j (s

0(z, a))c0j(z, a)∑J
j=1 p

0
j(s

0(z, a))c0j(z, a)
− 1.

where pτj (s) is the price paid for grocery variety j by a household exerting effort s in an
economy with redistributive tax τ . The index should be interpreted as the counterfactual
expenditure level ẽτ (z, a) a household in state (z, a) needs to buy the same basket as in
the original steady state with the same shopping effort. Again, I focus on changes in a
Laspeyres index and keep all policy functions at the original steady state with τ = 0 to
isolate changes in posted prices. For a fall in prices, the Laspeyres index provides a lower
bound on the welfare impact as households can gain further by adjusting their choices.

The change in households’ real income without reoptimizing policy functions is approx-
imated by ∆earn(z,a) − ∆P lasp(z, a). I aggregate changes in earnings and prices by
expenditure quintile using the distribution of households in the original steady state.
Table 8 presents results for a 5% earnings tax (τ = 0.05). Overall, prices decline in
response to the policy change as with more redistribution a larger share of demand is

37As the process for z is calibrated to households’ earnings post taxes and transfers, the introduction
of τ should be interpreted as additional redistribution relative to the current US system.
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accounted for by relatively low-income (high-shopping-effort) households. This drives up
demand-weighted search effort and hence drives down the prices of grocery goods. The
effect is even stronger for varieties with higher quality qj, yielding larger declines in the
price index of high-spending households.

While the transfer dominates changes in real income at the bottom of the expenditure
distribution, price changes are relatively more important at the top of the distribution
and can compensate net contributors for a significant share of their earnings loss. Due
to the assumption of a perfectly competitive outside good market, the reported changes
in the aggregate price index P provides a lower bound while the results for pG provide
an upper bound if all consumption was subject to the same frictions. Table 8 shows that
households at the top of the expenditure distribution are compensated for 5-14% of the
loss in their post-tax earnings due to the response of posted price distributions.

Table 8: Earnings and Price Changes under Redistributive Policies (τ = 0.05)

quintile of expenditures
Q1 Q2 Q3 Q4 Q5

income ∆earn 16.66% 5.21% 1.91% -0.15% -2.06%
prices ∆P -0.08% -0.09% -0.09% -0.09% -0.10%

∆pG -0.23% -0.25% -0.26% -0.27% -0.28%

share ∆P −∆P
|∆earn| 0.5% 1.6% 4.7% 62.3% 4.8%

share ∆pG
−∆pG
|∆earn| 1.4% 4.7% 13.4% 178% 13.7%

Note: Average change in post-tax earnings (∆earn), grocery (∆pG), and aggregate Laspeyres price index
(∆P ) within each expenditure quintile in response to a 5% earnings tax and budget neutral transfer.

Table 16 in Appendix C.5 reports price and income changes for alternative values of τ .
While both the income and price effects increase in the degree of redistribution (with
higher values of τ), their relative contributions to the overall change in real income
remains similar across all policy regimes considered.

The findings show that the effect of redistribution on demand composition reduces esti-
mates of the loss from taxation at the top. Net contributors to redistribution schemes can
benefit from lower price levels as retailers’ place more weight on the purchase behavior
of low-income households, reducing the real burden of redistributive policies.

7 Conclusion

This paper develops an equilibrium theory of expenditure inequality and price dispersion,
featuring search for prices, heterogeneous households’ with non-homothetic preferences,
and endogenous price distributions for multiple varieties. I provide analytical results on
retailers’ best response to households’ shopping effort and show that average posted prices
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decline in the share of demand stemming from high-search-effort households. Theoretical
predictions on the skewness of posted price distributions are in line with empirical evi-
dence from the Nielsen Consumer Panel. The calibrated model replicates salient features
of expenditure inequality and price dispersion. It shows that the response of posted prices
across varieties doubles the contribution of shopping effort to the difference between in-
equality in expenditure and consumption. After a shock similar to the Great Recession,
posted prices respond to losses in wealth but not to losses in earnings. By showing the
importance of accounting for the incidence of aggregate shocks, the model reconciles con-
flicting evidence on the cyclicality of retail markups. Finally, I show that endogenous
price changes in response to redistributive policies reduce the loss from redistribution at
the top by up to 14%. All of these results highlight the importance of accounting for equi-
librium effects of heterogeneity in households’ shopping effort and demand composition
when thinking about retail prices.

The focus of this paper is on households’ shopping effort and heterogeneity in price elas-
ticities across retailers for a given product. Recent evidence by Auer et al. (2022) suggests
additional heterogeneity in price elasticities across products, generating an additional role
of demand composition for posted prices. In the interest of tractability and introducing
rich household heterogeneity, retailers’ price posting problem has been deliberately kept
simple. An alternative approach would be to take the results of this paper as motivation
and introduce stylized heterogeneity in price elasticities and demand composition into a
more evolved price setting problem. Possible extensions include e.g. multiproduct price
posting as in Kaplan et al. (2019) or state dependent price adjustments as in Golosov
and Lucas (2007), Midrigan (2011), and Burdett and Menzio (2018). I leave all these
extensions for future work.
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A Extensions to the Retailer Problem

A.1 Entry and Fixed Cost of Operating

Consider a version of the price posting problem outlined in Section 2.1 where retailers
selling variety j are subject to a per-period fixed cost of operating Kj and the total mass
of retailers Mj is determined endogenously by free entry. With all other notation as
before, the total profits of a retailer posting price p in the adjusted model are given by

π̃j(p) =
Cj
Mj

[(1− s̄j) + s̄j2(1− Fj(p))] (p− κj)−Kj =
πj(p)

Mj

−Kj,

where πj(p) is retailers’ profits of posting p in the version of the model without fixed cost
of operating and a fixed mass one of retailers. To sustain an equilibrium distribution of
posted prices retailers have to be again indifferent between all prices on the support of
the posted distribution. Take two posted prices p1 and p2, indifference requires

π̃j(p1) = π̃j(p2)

⇒πj(p1)

Mj

−Kj =
πj(p2)

Mj

−Kj

⇒πj(p1) = πj(p2).

The indifference condition between prices is independent of Mj and Kj, i.e. independent
of entry and fixed cost of operating, and identical to the condition in the original model.
This implies the distribution of posted prices Fj(p) is identical to the model without
entry and fixed cost. To solve the model with fixed cost and entry, one can therefore first
recover the posted price distribution as well as the constant profits at any price on the
support of Fj(p), denoted π̄j, in the original model and solve for Mj given this solution.
Free entry requires zero total profits of operating, i.e. π̃j(p) = 0. The equilibrium mass
of retailers is therefore given by Mj =

π̄j
Kj

.

A.2 Heterogeneous Marginal Cost

Take the setup from Section 2.1 but consider a continuous distribution of retailers over
marginal cost, with CDF Γj(κ) and support [κj, κ̄j] and assume κ̄j = p̄j. I.e. consider a
distribution of active retailers for which the support has to end at the maximum willing-
ness to pay. This assumption imposes no restriction on the solution as no retailer with
marginal cost above p̄j could ever make a sale with positive profits. Profits of a retailer
with marginal cost κ of posting price p for variety j are given by

πj(p, κ) = (p− κ) ((1− s̄j) + 2s̄j(1− Fj(p)))Cj
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Define p(κ) as the set of prices maximizing πj(p, κ) for given Fj(p), i.e. the indifference
set of posted prices for a retailer with marginal cost κ.

A.2.1 Solving for the Distribution of Posted Prices

To solve for the equilibrium distribution of posted prices I follow closely the steps of
Burdett and Mortensen (1998) or Mortensen (2003) for a similar model of wage posting.

1. Properties of the Distribution

By similar argument as in Burdett and Judd (1983), the posted distribution Fj(p)
has no mass points, has a connected support, and the upper bound of the support of
Fj(p) is p̄j. Intuitively, all three can be shown by providing a profitable deviation in
price posting if an posted price distribution is violating one of the three conditions.

2. Prices Posted Are Weakly Increasing in Marginal Cost

For any κ′′ > κ′, p′ ∈ p(κ′), and p′′ ∈ p(κ′′) it has to hold that πj(p′, κ′) > πj(p
′′, κ′′)

and p′′ ≥ p′, i.e. profits are strictly decreasing and prices are weakly increasing in
marginal costs. To do so, note the following

π′
j(p

′, κ′) = (p′ − κ′) ((1− s̄j) + 2s̄j(1− Fj(p
′)))Cj (⋆1)

≥ (p′′ − κ′) ((1− s̄j) + 2s̄j(1− Fj(p
′′)))Cj (⋆2)

> (p′′ − κ′′) ((1− s̄j) + 2s̄j(1− Fj(p
′′)))Cj = πj(p

′′, κ′′) (⋆3)

≥ (p′ − κ′′) ((1− s̄j) + 2s̄j(1− Fj(p
′)))Cj (⋆4)

Where the steps from (⋆1) to (⋆2) and (⋆3) to (⋆4) follow from the optimality of
p′ ∈ p(κ′) and p′′ ∈ p(κ′′) respectively and the step from (⋆2) to (⋆3) from κ′′ > κ′.
From above, it is immediately clear that πj(p′, κ′) > πj(p

′′, κ′′), i.e. profits are
strictly decreasing in κ. To see that p′′ ≥ p′ note that (⋆1)− (⋆4) ≥ (⋆2)− (⋆3) > 0

and hence

(κ′′ − κ′) ((1− s̄j) + 2s̄j(1− Fj(p
′))) ≥ (κ′′ − κ′) ((1− s̄j) + 2s̄j(1− Fj(p

′′)))

which yields Fj(p′′) ≥ Fj(p
′) and therefore, as any cumulative distribution cannot

be decreasing, p′′ ≥ p′. So any price optimal at κ′ cannot be higher than any price
optimal at κ′′. Hence, p(κ′) and p(κ′′) can intersect in at most one boundary point.
With a continuous distribution of marginal cost, the latter also implies that p(κ)
has to be single valued.
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3. The Price Distribution is a Shifted Distribution of Marginal Cost

By the single value property of p(κ)

Fj(p) = Fj(p(κ)) = Γj(κ)

and hence

F ′
j(p(κ)) = fj(p(κ)) =

Γ′
j(κ)

p′(κ)

4. The Price Function p(κ) Solves Retailers Profit Maximization

Analogue to before, the profits of a retailer with marginal cost κ posting price p are
given by

πj(p, κ) = (p− κ) ((1− s̄j) + 2s̄j(1− Fj(p)))Cj

and the profit maximizing price satisfies

∂π

∂p
= ((1− s̄j) + 2s̄j(1− Fj(p))− (p− κ)2s̄jF

′(p))Cj = 0

which yields

1 =
(p− κ)2s̄jF

′(p)

(1− s̄j) + 2s̄j(1− Fj(p))

and by the result of 3.)

p′(κ) =
(p(κ)− κ)2s̄jΓ

′
j(κ)

(1− s̄j) + 2s̄j(1− Γj(κ))

This differential equation together with the boundary condition p(κ̄) = κ̄ = p̄ pins
down the unique solution to p(κ) and hence to F ′(p). The boundary condition holds
because the upper bound of any price distribution has to be at p̄ (else there are
profitable deviations) and a firm with marginal cost κ = κ̄ = p̄ will only be willing
to post this price.

5. Obtaining a Solution

Define
T (k) = log ((1− s̄j) + 2s̄j(1− Γj(κ)))

such that
T ′(k) =

−2s̄jΓj(κ)

(1− s̄j) + 2s̄j(1− Γj(κ))
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We can the rewrite the first difference equation pinning down the pricing function
as

p′(κ) = −(p(κ)− κ)T ′(κ) ⇒ p′(κ) + T ′(κ)p(κ) = κT ′(κ)

Therefore, any solution has to satisfy (multiply both sides by eT (κ) before integrat-
ing)

p(κ)eT (κ) =

∫ κ

κ

xT ′(x)eT (x)dx+ A = κeT (κ) − κeT (κ) −
∫ κ

κ

eT (x)dx+ A

where the second equality follows from integration by parts. Hence

p(κ) = κ+ e−T (κ)
[
A− κeT (κ) −

∫ κ

κ

eT (x)dx

]

Using the boundary condition p(κ̄) = κ̄ it follows that

A = κeT (κ) +

∫ κ̄

κ

eT (x)dx

The solution to the pricing function and the distribution of posted prices is hence
given as

p(κ) = κ+ e−T (κ)
∫ κ̄

κ

eT (x)dx = κ+

∫ κ̄

κ

(1− s̄j) + 2s̄j(1− Γj(x))

(1− s̄j) + 2s̄j(1− Γj(κ))
dx

with derivative

p′(κ) = 1− 1− (−2s̄jΓ
′
j(κ))

∫ κ̄

κ

(1− s̄j) + 2s̄j(1− Γj(x))

[(1− s̄j) + 2s̄j(1− Γj(κ))]
2dx > 0

and therefore

F ′(p) =
Γ′
j(κ)

p′(κ)
=

1

2s̄j
∫ κ̄
κ

(1−s̄j)+2s̄j(1−Γj(x))

[(1−s̄j)+2s̄j(1−Γj(κ))]
2dx

=
[(1− s̄j) + 2s̄j(1− Γj(κ))]

2

2s̄j(κ̄− κ)(1 + s̄j)− 4s̄2j
∫ κ̄
κ
Γj(x)dx

We cannot conclude anything on how the profit margins (markups) per sale are
changing with marginal cost κ. To see this note that

p(κ)− κ =

∫ κ̄

κ

(1− s̄j) + 2s̄j(1− Γj(x))

(1− s̄j) + 2s̄j(1− Γj(κ))
dx
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and hence

∂(p(κ)− κ)

∂κ
= p′(κ)− 1 = −1 + 2s̄jΓ

′
j(κ)

∫ κ̄

κ

(1− s̄j) + 2s̄j(1− Γj(x))

[(1− s̄j) + 2s̄(1− Γj(κ))]
2dx

So whether markups are increasing or decreasing in marginal costs depends on the
shape of the distribution Γj(κ). Intuitively, retailers’ optimization trades off higher
margins (markups) against a decrease in demand, where the latter depends on the
distribution of prices which in turn depends on the distribution of marginal costs.

A.2.2 Quantitative Results under Uniform Marginal Costs

While an analytical characterization of how the moments of the price distribution respond
to changes in demand-weighted shopping effort s̄j under heterogeneous marginal cost
is beyond the scope of this paper, I show robustness of the analytical results for the
baseline model by reporting numerical simulations. I assume a uniform distribution
of marginal cost over [κj, κ̄j] and consider parameterizations with p̄j ∈ {1, 2, 3, 4, 5},
κmin ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} such that κj = κminp̄j and κ̄j = p̄j. I take p̄j = 3

and κmin = 0 as the baseline and change one parameter at a time, simulating 1,000,000
price draws for each combination of parameters and computing the mean and skewness
of the posted price distribution.

To highlight the properties of a solution to the model with heterogeneous κ, Figure 13
plots the pricing function p(k) and CDF Fj(p) as well as the analytical and simulated
PDF of a single calibrated version with κ̄ = p̄ = 2, κ = 1, s̄ = 0.75.

Figure 14 recovers the result of skewness being a strictly increasing function of average
search effort s̄. Other parameters do not have considerable influence on the skewness
of the price distribution. For the mean of posted prices the main mechanism pertains:
For any combination of parameters considered the average posted price is decreasing in
shopping effort. This is because the pricing function gets more and more concentrated
at the maximum willingness to pay when s̄ goes to zero.

Results for other types of distributions (exponential, logistic) as well as a version with a
discrete set of marginal-cost types yield similar conclusions: While under some calibra-
tions small regions of skewness decreasing in shopping effort are possible, these usually
exist only for s̄j ≈ 1 and are associated with counterfactually low levels of price disper-
sion. Exploiting the skewness of price distributions for an empirical test of the mechanism
is therefore a reasonable approximation even in a world with potentially heterogeneous
marginal cost.
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Figure 13: Uniform Distribution - Example
Note: Model solution for a calibration with uniform distribution of marginal costs, p̄ = 2, κ = 1,
s̄ = 0.75.
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Figure 14: Uniform Distribution - Simulations
Note: Moments of simulated price distributions over s̄ ∈ [0, 1] for a calibration with uniform distribution
and different values of p̄ and κ.
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B Empirical Appendix

B.1 The Nielsen Dataset

All empirical results presented in this paper are based on the Nielsen Consumer Panel,
provided via the Kilts Center for Marketing at Chicago Booth. The dataset is a nation-
ally representative, annual panel of around 60,000 US households who report on their
grocery expenditures at daily as well as demographic information at annual frequency.
Demographic variables include e.g. information on household composition, age, educa-
tion, occupation, employment status, income, and location of residence. The dataset
is constructed as a panel and the median household remains in the sample for about
3 consecutive waves. Nielsen applies several quality checks such as minimum reporting
requirements to the sample before making data available. Households in the sample are
provided with a device to record the prices and quantities of all purchases made in stores
by scanning the barcodes of the items they bought (or record prices manually if the store
is not participating in Nielsen’s sample). The focus of the dataset is on grocery and drug
stores, supermarkets and superstores, covering approximately 35% of spending excluding
durable goods.38

Prices and quantities are reported at the barcode level. Nielsen organizes all barcodes
into 10 departments (e.g. dry groceries or fresh foods), which are then divided into 125
product groups (e.g. snacks vs. pasta within dry groceries), and further split into about
1,100 product modules (e.g. potato chips vs. tortilla chips within snacks). Within prod-
uct modules each variety is uniquely identified by its Universal Product Code (UPC),
examples of a UPC are e.g. a box of Pringles Sour Cream and Onion or a bag of Lay’s
BBQ within the module potato chips. For each purchase of a barcode at a store at a
given day, Nielsen records the quantity bought, the total price of the transaction, the
value of all coupons used as well as the unique store identifier of the location where the
purchase was made. Households’ purchases can further be grouped into shopping trips,
where a trip consists of all purchases of any barcode made by a household in a given store
on a given day.

Data is provided in annual waves and I use the waves of 2007-2019. Data is also available
for the period 2004-2006, but I focus on the later period due to a sample break between
2006 and 2007. All empirical results remain qualitatively unchanged if earlier waves are
included. Across all households the dataset contains a total of about 7.5 million shopping
trips and around 50 million purchases from a universe of 500,000 UPCs per wave.

38For further details on the dataset and its application in Macroeconomic research see e.g. Argente
and Lee (2021), Kaplan and Menzio (2015), Pisano et al. (2022), Broda and Parker (2014) or Michelacci
et al. (2022).
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No data on wealth is available in the Nielsen panel and income data is only available
as categorical variable and reported as the tax base for the previous calendar year, i.e.
refer to households taxable income two years prior to the sample. On the other hand,
expenditures on the consumption categories covered in Nielsen are well measured. This
is why for all baseline results on heterogeneity across households, I sort by their position
in the expenditure distribution. Whenever I refer to expenditure, I adjust households’
total annual expenditure measured in the Nielsen dataset by the square root of household
size and (where applicable) sort them into quintiles/deciles based on their position in the
expenditure distribution in the year of observation. Wherever dollar values are reported,
these are adjusted to 2019 USD using the CPI for all Urban Consumers.

B.2 Local vs. National Average Prices

For the baseline analysis of households’ shopping effort I measure the prices households
pay relative to the national, annual average price across all households. The literature
often defines price distributions and the relative price a household pays more narrowly,
i.e. over Scantrack Market regions and by quarter (see e.g. Kaplan and Menzio 2015). As
also pointed out by Pytka (2022), this way of measuring households’ shopping effort can
be subject to a small sample bias. The bias can be alleviated by increasing the number of
observations considered in computing average prices. In this appendix, I define the bias
formally and show robustness of my main empirical findings to alternative definitions of
average prices.

To measure shopping effort in the data, the literature generally compares relative prices
paid and benchmarks household i’s average price pij for barcode j against the average
price paid p̄j for the barcode across all households. This leads to a potential downward
bias in the measured effect of shopping effort if household i accounts for a large share of
transactions of barcode j. More formally, the price pij is defined as the quantity-weighted
average over all transactions Ti of household i

pij =

∑Ti
τ=1 pτijqτij∑Ti
τ=1 qτij

,

where pτij and qτij are respectively the price paid and quantity purchased of barcode j
by household i in transaction τ . The average price p̄j is defined accordingly as

p̄j =

∑
i

∑Ti
τ=1 pτijqτij∑

i

∑Ti
τ=1 qτij

.

One can rewrite the average price paid as

p̄j = νijpij + (1− νij)p−ij,
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where νij =
∑Ti

τ=1 qτij∑
i

∑Ti
τ=1 qτij

is household i’s share in demand for variety j and

p−ij =

∑
h

∑Th
τ=1 pτhjqτhj −

∑Ti
τ=1 pτijqτij∑

h

∑Th
τ=1 qτhj −

∑Ti
τ=1 qτij

is the average price paid by all households except household i. The difference of household
i’s price relative to the average yields

∆pij = pij − p̄j = (1− νij)(pij − p−ij).

While p−ij is an unbiased measure of the true average price paid, the price difference will
be biased towards zero by a factor (1−νij), i.e. will be biased more the larger the demand
share of household i for good j. A similar mechanism pertains for the household level
price index described in Section 3.1.

A way to alleviate the bias is to increase the number of transactions considered to compute
p̄j, thereby decreasing νij. This can be done by either computing the average price for
barcode j at the national, annual level or defining it at the local, quarterly level but only
considering transactions for barcodes with a minimum number of transactions in the
region and quarter. Alternatively, one could also drop a household’s own transactions
when computing the average price. However, as for many goods there are only few
households consuming it in a narrow region this increases the noise in average prices and
often effectively implies dropping the good if a household accounts for a significant share
of local purchases of this barcode.

Table 9 repeats the estimation in equation (6) for local average prices and barcodes with a
minimum of 1, 25, 50 and 100 transactions respectively. The larger the minimum number
of transactions, the closer the estimates (especially the coefficient on log-expenditures)
get to the one obtained using national, annual average prices (column (1)). I take this as
justification for focusing on the results based on national and annual average prices.
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Table 9: Shopping Effort across Households (by Number of Transactions)

price index price index price index price index price index

(national) (local) (local) (local) (local)

(Nmin = 1) (Nmin = 1) (Nmin = 25) (Nmin = 50) (Nmin = 100)

(1) (2) (3) (4) (5)

log(expenditure) 0.706∗∗∗ 0.358∗∗∗ 0.456∗∗∗ 0.575∗∗∗ 0.678∗∗∗
(0.078) (0.022) (0.066) (0.079) (0.102)

income 0.080∗ 0.026 0.071 0.093 0.071
30k-60k (0.046) (0.024) (0.060) (0.081) (0.109)

income 0.178∗∗∗ 0.076∗∗ 0.208∗∗ 0.294∗∗∗ 0.251∗
60k-100k (0.057) (0.030) (0.081) (0.108) (0.141)

income 0.326∗∗∗ 0.113∗∗∗ 0.254∗∗ 0.354∗∗ 0.156
>100k (0.070) (0.037) (0.106) (0.140) (0.173)

1 non-employed −0.236∗∗∗ −0.104∗∗∗ −0.163∗∗∗ −0.214∗∗∗ −0.287∗∗∗
household head (0.037) (0.019) (0.051) (0.066) (0.092)

2 non-employed −0.422∗∗∗ −0.200∗∗∗ −0.319∗∗∗ −0.348∗∗∗ −0.618∗∗∗
household heads (0.068) (0.036) (0.087) (0.111) (0.156)

head’s age −0.013 0.021 0.095 0.093 0.211∗
25-65 (0.050) (0.027) (0.071) (0.090) (0.127)

sqrt(HH size) 0.399∗∗∗ 0.195∗∗∗ 0.222∗∗ 0.277∗∗ 0.403∗∗∗
(0.066) (0.033) (0.090) (0.118) (0.152)

FE year-state X X X X X
FE household X X X X X
Observations 801,398 801,398 800,320 797,812 780,476

Note: Regression of household-level price index on characteristics. Column (1) price index (prices paid
vs. average price) defined based on national annual average price. Column (2) price index (prices paid
vs. average price) defined based on local quarterly average price. Column (3) price index (prices paid vs.
average price) defined based on local quarterly average price, restricted to products with at least N = 25

local quarterly observations. Column (4) price index (prices paid vs. average price) defined based on local
quarterly average price, restricted to products with at least N = 50 local quarterly observations.. Column
(5) price index (prices paid vs. average price) defined based on local quarterly average price, restricted
to products with at least N = 100 local quarterly observations. Data obtained from Nielsen Consumer
Panel waves 2007-2019. Observation weighted with Nielsen provided sample weights. Standard errors
clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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B.3 Evidence on Demand Composition and Price Distributions

Table 10: Demand Composition and the Skewness of Price Distributions (Robustness)

baseline Kelly unweighted unweighted only HH weights
regression skewness skewness

(1) (2) (3) (4) (5)

expenditure −1.638∗∗∗ −0.135∗∗∗ −1.802∗∗∗ −1.450∗∗∗ −1.627∗∗∗
quintile 2 (0.242) (0.043) (0.143) (0.215) (0.239)

expenditure −2.309∗∗∗ −0.226∗∗∗ −2.583∗∗∗ −2.100∗∗∗ −2.354∗∗∗
quintile 3 (0.256) (0.043) (0.163) (0.230) (0.251)

expenditure −3.067∗∗∗ −0.282∗∗∗ −3.374∗∗∗ −2.793∗∗∗ −3.062∗∗∗
quintile 4 (0.258) (0.042) (0.178) (0.244) (0.260)

expenditure −3.412∗∗∗ −0.382∗∗∗ −4.066∗∗∗ −3.151∗∗∗ −3.425∗∗∗
quintile 5 (0.253) (0.040) (0.188) (0.244) (0.255)

FE module X X X X X
FE quarter-SMC X X X X X
Observations 3,026,551 2,832,442 3,026,551 3,026,551 3,026,551

Note: Regression of the skewness of price distributions on demand shares by expenditure quintile. Price
distributions defined as all transactions of a barcode within a Scantrack Market Region and quarter.
Demand shares defined as the share of national annual spending on a barcode by quintile. Column (1):
Baseline result, observations weighted with distribution by household weights and quantities pruchased
and across distributions by total expenditures included on given price distribution. Column (2): Baseline
weights, Kelly’s measure of skewness. Column (3): No weighting of price distributions in regressions.
Column (4): No weighting of price observations within distributions. Column (4): Price observations
within distributions weighted by household weights but not quantities. Data obtained from Nielsen
Consumer Panel waves 2007-2019. Standard errors clustered at the barcode-year level. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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Table 11: Demand Composition and Price Distributions (Number of Transactions)

Nmin = 25 Nmin = 50 Nmin = 100

(1) (2) (3)

expenditure −1.638∗∗∗ −2.289∗∗∗ −3.162∗∗∗
quintile 2 (0.242) (0.528) (1.174)

expenditure −2.309∗∗∗ −2.929∗∗∗ −4.268∗∗∗
quintile 3 (0.256) (0.570) (1.212)

expenditure −3.067∗∗∗ −3.797∗∗∗ −5.186∗∗∗
quintile 4 (0.258) (0.569) (1.225)

expenditure −3.412∗∗∗ −4.654∗∗∗ −6.436∗∗∗
quintile 5 (0.253) (0.556) (1.219)

FE module X X X
FE quarter-SMC X X X
Observations 3,026,551 803,604 202,067

Note: Regression of the skewness of price distributions on demand shares by expenditure quintile. Price
distributions defined as all transactions of a barcode within a Scantrack Market Region and quarter.
Demand shares defined as the share of national annual spending on a barcode by quintile. Column
(1): Only price distributions with at least N = 25 transactions. Column (2): Only price distributions
with at least N = 50 transactions. Column (3): Only price distributions with at least N = 100

transactions. Data obtained from Nielsen Consumer Panel waves 2007-2019. Observations weighted by
total expenditures included on given price distribution. Standard errors clustered at the barcode-year
level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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B.4 Consumption Baskets and Separation in the Goods Market

Quantifying non-homotheticities in the data requires a measure for the similarity of con-
sumption baskets. Define the consumption basket of any group g of households i via
the share of their annual total expenditures allocated to each good ωgj . The expenditure
share of good j for group g in a given year is given as

ωgj =

∑
i∈g
eij∑

j∈J

∑
i∈g
eij
.

The vector of expenditure shares for any given group can be seen as a distribution over
a discrete set of alternatives – the universe of available products. The similarity of two
such vectors, i.e. the consumption baskets of two groups of households g and h, can be
measured by computing the histogram overlap Ωg,h in expenditure shares, given as

Ωg,h =
∑
j∈J

min
{
ωgj , ω

h
j

}
.

Note that under homothetic preferences and the law of one price ωgj = ωhj ∀j, g, h and
hence Ωgh = 1, so any deviation of the overlap from one can be interpreted as a deviation
from these assumptions. Conducting the analysis by groups of households accounts for
variation in taste within groups and computing statistics at the annual frequency averages
out seasonal fluctuations.

Figure 15 reports the histogram overlap between the first and fifth quintile of the dis-
tribution of annual expenditures, defining a good at different levels of aggregation. If
products are broadly defined, e.g. at the Nielsen department level, the overlap in con-
sumption baskets is as high as 94% and even when considering product modules it is still
as high as 86%. Only at the lowest level of aggregation where products are unique UPCs
(the barcode level) the overlap decreases substantially to 63%. I.e. consumption baskets
of high and low expenditure households exhibit a significant mismatch driven by variation
in purchases of closely substitutable goods within Nielsen-defined product modules. For
the empirical decomposition in Section 5.1 it is also important to note that conditioning
on units of measurement within product modules does not alter the overlap substantially
compared to considering the entire module, i.e. there are no notable non-homotheticities
by unit of measurement. The overlap between any other two quintiles of the expendi-
ture distribution exhibits similar patterns. Overlap at any level of aggregation decreases
monotonically in the distance (difference in total expenditures) between two groups.

To complement the analysis based on Nielsen data for even broader categories of con-
sumption goods, the final bar in Figure 15 produces the overlap between the bottom
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Figure 15: Consumption Basket Overlap - Top vs. Bottom Expenditure Quintile
Note: Histogram overlap in the vector of expenditure shares for the bottom and top quintile of expen-
ditures, by different definitions of a product. First five columns derived from Nielsen Consumer Panel,
final column from Consumer Expenditure Survey (CEX). CEX column considers 14 spending categories.

and top quintile of the income distribution in the Consumer Expenditure Survey (CEX)
defining goods at the 14 most aggregated categories.39 The non-homotheticity in CEX
categories is roughly at the level of Nielsen defined product modules, while the barcode
level overlap measured in Nielsen is approximately 25% lower.

Complementary evidence to the missing overlap in consumption baskets is a measure of
how important the demand of other households is for the goods that any group of house-
holds buys. First, to determine how important demand from any group of households g
is for a given good j, we define the demand share (DS) of group h for good j as

DShj =

∑
i∈h

eij∑
g∈G

∑
i∈g
eij
.

We can then weight the demand shares of group h with the basket of group g to compute
the cross market share (CMS) of group h for the basket of group g, defined as

CMSgh =
∑
j∈J

ωgjtDS
h
j .

39I use aggregated series for consumption by category and income quintile reported by the Bureau
of Labor Statistics (BLS). The 14 expenditure categories considered include: food at home, food away
from home, alcoholic beverages, housing, apparel and services, transportation, healthcare, entertainment
personal care products and services, reading, education, tobacco products and smoking supplies, miscella-
neous expenditures, cash contributions, personal insurance and pensions.
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This statistic can be interpreted as the average demand share of h in the basket of g and
measures how important group h is for the demand of goods that group g buys.

Figure 16 plots the cross market shares by quintile of the expenditure distribution at the
barcode level. It shows that each group of households is substantially overrepresented in
their own consumption baskets. E.g. the lowest expenditure quintile is twice as important
for their own consumption basket as for the basket of the highest expenditure quintile.

Figure 16: Cross Market Shares
Note: Barcode-level cross market shares of expenditure quintile h for the basket of quintile g. Cross
market shares are constructed weighting the share of demand for a product j coming from quintile h by
the expenditure share ωg

j of product j in the basket of quintile g. Data from Nielsen Consumer Panel.
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B.5 Price Differences

Figure 17: Price Differences along the Expenditure Distribution – Deciles
Note: Price differences by expenditure quintile in the data, as a share of households’ grocery spending.
“Within” refers to differences between the price paid by a given household and the average price for a
given product (direct effect of shopping), while “across” is the difference in average prices across different
products. Data from the Nielsen Consumer Panel 2007-2019. The price within products is computed by
barcode and the price across products is computed across barcodes within a product module (by unit of
measurement). Confidence intervals bootstrapped with 100 draws at the household-year level.

blub
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Table 12: Price Differences - Regressions

within products across products trips per purchase

(1) (2) (3)

log(expenditure) 0.961∗∗∗ 3.426∗∗∗ −0.042∗∗∗
(0.069) (0.147) (0.001)

income 0.059 0.544∗∗∗ −0.001∗
30k-60k (0.050) (0.100) (0.001)

income 0.186∗∗∗ 1.048∗∗∗ −0.002∗∗
60k-100k (0.063) (0.127) (0.001)

income 0.363∗∗∗ 1.451∗∗∗ −0.002∗∗
>100k (0.080) (0.160) (0.001)

1 non-employed −0.284∗∗∗ −0.665∗∗∗ 0.002∗∗∗
household head (0.041) (0.083) (0.000)

2 non-employed −0.456∗∗∗ −1.471∗∗∗ 0.004∗∗∗
household heads (0.072) (0.160) (0.001)

head’s age 0.023 0.155 −0.001
25-65 (0.054) (0.113) (0.001)

sqrt(HH size) 0.544∗∗∗ 0.645∗∗∗ −0.032∗∗∗
(0.073) (0.148) (0.001)

mean 0.15
FE year-state X X X
FE household X X X
Observations 801,398 801,398 801,398

Note: Regression of the contribution of differences between prices paid and the average price (1) within
product or (2) across products to expenditure inequality on household characteristics. Contributions
defined as a share of households’ grocery expenditures. The price within products is computed by
barcode and the price across products is computed across barcodes within a product module by unit of
measurement. Column (3) number of annual shopping trips (stores visited) divided by number of annual
purchases (transactions for a barcode-store-day pair). Data from the Nielsen Consumer Panel waves
2007-2019. Standard errors clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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C Model Appendix

C.1 Income Process

For households’ idiosyncratic labor productivity z, I assume an AR(1) process with in-
novations from a Gaussian mixture, formally defined as

log(z′) = ρ log(z) + ε

ε ∼

N (µε,1, σ
2
ε,1) with probability χ

N (µε,2, σ
2
ε,2) with probability 1− χ

I discretize the process with 16 states for z following the method of Farmer and Toda
(2017). The income process requires calibrating 6 parameters (ρ, p, µε,1, σ

2
ε,1, µε,2, σ

2
ε,2).

I impose µε,2 = − χ
1−χµε,1 to obtain mean zero innovations and calibrate the remaining

parameters to match five moments of annual, equivalence scale adjusted, post-tax house-
hold labor earnings: The cross-sectional variance of earnings, the standard deviation,
skewness, kurtosis of annual earnings growth as well as the difference between the 90th
and 10th percentile of annual earnings changes. Target values based on PSID data are
obtained from De Nardi et al. (2020). For more information on how the target values are
constructed see their Appendix A.3. All targets are reported in Table 13 along with the
model counterparts. The associated parameter values are ρ = 0.91, σ1 = 0.59, σ2 = 0.23,
χ = 0.082, and µ1 = −0.57.

Table 13: Calibration Targets – Income Process

Targets (Annual) Model Data

Cross Sectional Variance (Levels) 0.61 0.57
Standard Deviation of Changes 0.33 0.33
Skewness of Changes -0.99 -0.98
Kurtosis of Changes 10.6 10.3
P90-P10 of Changes 0.53 0.64

Note: Results of the calibration of an AR(1) income process with Gaussian-mixture shocks. The process
is discretized with 16 states following Farmer and Toda (2017). Data moments for the PSID obtained
from De Nardi et al. (2020).

C.2 Solution Method

The model is solved computationally. The solution to households’ spending-savings prob-
lem is obtained by a version of the endogenous grid method (EGM) in the spirit of Carroll
(2006). First, I solve for the consumption allocation and choice of shopping effort given
expenditures, applying Broyden’s method to the equations for households’ consumption
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aggregator (10) and optimality condition for effort (11). The optimal choices for con-
sumption allocation and shopping effort provide a solution for U(e). I approximate the
derivative U ′(e) numerically. With a numerical approximation of U ′(e) at hand, I can
apply the standard EGM to solve for households’ spending-savings decision.

To solve for a steady state, I iterate on a the vector of demand-weighted search effort
for all varieties {s̄j}Jj=1 jointly until a fixed point is reached. I make a guess for {s̄j}Jj=1,
solve for the implied price distributions and households’ decisions, and finally aggregate
households consumption and shopping policies to obtain an implied vector of demand-
weighted shopping effort. I apply Broyden’s method to update the guess for {s̄j}Jj=1.
Solving for aggregate dynamics requires finding a path for all demand-weighted shopping
efforts

{
{s̄jt}Jj=1

}T
t=1

. I solve for these paths by applying the sequence-space Jacobian
method of Auclert et al. (2021).

C.3 Welfare Implications

In addition to the one period results on welfare reported in Section 5, this appendix
computes the long term effects of living in a counterfactual economy without search
effort and alternative prices. As in the main text, I consider two counterfactuals, (i)
all households paying the average price paid within each variety p̂jk or (ii) paying the
marginal cost plus average profit margin across varieties κjk + (p̃k − κ̃k) for each variety.
In both cases, there is no price dispersion for identical varieties, search effort is set to
zero, and hence there is no disutility of effort.

I first compute welfare in terms of consumption-equivalent variation and ask by what
percentage I would need to change consumption of a household with current idiosyncratic
earnings z and assets a permanently to make her indifferent to the steady state in the
counterfactual economy. Formally, this measure is defined as

∆CCF (z, a) =

(
V (z, a) + 1

(1−ϕ)(1−β)

V CF (z, a) + 1
(1−ϕ)(1−β)

) 1
1−ϕ

− 1,

where V (z, a) is a households’ value function in steady state and V CF (z, a) the value of
living in the counterfactual economy.

Figure 18a reports the results for both counterfactuals. Its results are similar to the
one-period findings presented in section 5.2. The consequences for the welfare of high
spending households are attenuated, as taking into account the infinite horizon lets them
internalize the probability of becoming a low spending household in the future. This
forward looking effect reduces the impact of shopping on welfare inequality to about 1%.
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(a) Full Effect (b) Prices Only

Figure 18: Permanent Welfare Effects of Shopping Effort
Note: Permanent change in total consumption index (C) under alternative prices and zero shopping
effort to make a household indifferent between living in the alternative economy and in the steady state
economy. Counterfactuals allow households to optimally choose their savings and consumption baskets
assuming they have to pay (i) the average price within each grocery variety or (ii) marginal cost plus
the average margin across varieties. Panel (a) displays the full effect on welfare. Panel (b) uses a
counterfactual measure of steady state welfare, abstracting from the disutility of effort, such that all
differences are due to the alternative prices.

Figure 18b presents results using a counterfactual steady state value function without
any disutility from shopping effort, computed as

V noshop(z, a) = u
(
CSS(z, a)

)
+ βEz′|zV noshop(z′, a′),

where CSS(z, a) is the steady state consumption level of a household in state (z, a). This
counterfactual isolates the welfare effect of price differences as it eliminates any welfare
gains from setting the disutility of shopping effort to zero under the alternative price
regimes. Abstracting from the reduction in disutility makes the counterfactual economies
more costly in welfare terms for all households, but more so for the top quintile (0.56%
in consumption terms) as opposed to the bottom quintile (0.35%).

As the welfare results based on the non-homothetic aggregate consumption index C are
not easily interpretable in terms of the quantities consumed, I compute an alternative
measure by compensating households with a one-off change in their asset holdings ∆(z, a)

for moving them between the counterfactual economies and the steady state, such that

V CF (z, a+∆(z, a)) = V (z, a).

Figure 19 reports the transfer as a share of households’ expenditures and Figure 20 as a
share of households’ assets. The conclusions from both figures with respect to the relative
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contributions of direct and equilibrium effects are similar to the computations based on
compensating changes in households consumption index C.

(a) Full Effect (b) Prices Only

Figure 19: Asset Transfer as a Share of Expenditures
Note: Change in initial asset holdings as a fraction of total expenditure under alternative prices and
zero shopping effort to make a household indifferent between living in the alternative economy and
in the steady state economy. Counterfactuals allow households to optimally choose their savings and
consumption baskets assuming they have to pay (i) the average price within each grocery variety or (ii)
marginal cost plus the average margin across varieties. Panel (a) displays the full effect on welfare. Panel
(b) uses a counterfactual measure of steady state welfare, abstracting from the disutility of effort, such
that all differences are due to the alternative prices.

(a) Full Effect (b) Prices Only

Figure 20: Asset Transfer as a Share of Assets
Note: Change in initial asset holdings as a fraction of assets under alternative prices and zero shopping
effort to make a household indifferent between living in the alternative economy and in the steady state
economy. Counterfactuals allow households to optimally choose their savings and consumption baskets
assuming they have to pay (i) the average price within each grocery variety or (ii) marginal cost plus
the average margin across varieties. Panel (a) displays the full effect on welfare. Panel (b) uses a
counterfactual measure of steady state welfare, abstracting from the disutility of effort, such that all
differences are due to the alternative prices.
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C.4 Cyclicality of Retail Prices and Markups

To illustrate how the incidence of aggregate shocks can result in different responses of
retail prices and markups even when the shock has identical size on aggregate, I simulate
an unanticipated decline in aggregate earnings of 3% holding all parameters fixed at
steady state values. Earnings revert back to their steady state level at a rate of 0.5 along
a perfect foresight transition path. Consider three different scenarios: In a first scenario
all households are affected, i.e. each household sees a 3% decline in her earnings. In a
second scenario, aggregate income again falls by 3% but the losses are concentrated only
on the top 25% households in the labor earnings distribution – each of them affected
proportionately to their labor productivity. In a third scenario, the same aggregate loss
affects only the bottom 25% of the labor earnings distribution.

Figure 21: Aggregate Prices under Varying Incidence
Note: Response of an aggregate Laspeyres index of posted prices PF

t =
∑J

j=1 CSS
j µF

jt∑J
j=1 CSS

j

to a 3% loss in

aggregate labor earnings relative to the steady state, affecting (i) all households proportionately to their
labor earnings, (ii) only the bottom quartile of labor earnings (proportionately to their earnings), or (iii)
only the top quartile (proportionately to their earnings).

Figure 21 plots the response of a Laspeyres index of average prices posted for all three
scenarios. Focusing first on the case with all households affected, prices decline in response
to a loss in aggregate earnings. If losses are concentrated at the top of the distribution,
prices become more procyclical. In response to the same loss in aggregate earnings
concentrated among the bottom of the earnings distribution, prices in the model economy
become countercyclical. As all parameters including marginal cost κj are fixed at steady-
state levels, these price responses are driven entirely by changes in markups.

Again, I decompose the response for each scenario into the contribution of changes in
shopping policies, consumption policies, and the distribution of households. Figure 22
plots the equilibrium response as a baseline together with the three counterfactuals for
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each of the scenarios considered. As in the Great Recession exercise presented in Section
6 an increase in the shopping effort of affected households reduces posted prices under all
three scenarios. Shopping policies change by more when losses are concentrated among
low-income households, as for them the same aggregate shock is comparably larger relative
to their earnings. What accounts for the differences in cyclicality are differential responses
of demand composition, driven by changes in households’ consumption policies and the
distribution of agents across the state space. In line with the findings for earnings and
wealth losses during the Great Recession, the more low-income households are affected
the more they have to reduce consumption and the lower becomes their share in overall
demand. Retailers attach more weight to the lower effort of high-income buyers and
increase prices in response. For the scenario affecting only the bottom of the income
distribution, this demand composition effect is strong enough to outweigh the direct
increase in shopping effort, yielding an overall countercyclical price response.

Figure 22: Average Prices and Aggregate Income Losses
Note: Response of an aggregate Laspeyres index of posted prices PF

t =
∑J

j=1 CSS
j µF

jt∑J
j=1 CSS

j

to a 3% loss in

aggregate labor earnings relative to the steady state, affecting (i) all households proportionately to their
labor earnings, (ii) only the bottom quartile of labor earnings (proportionately to their earnings), or (iii)
only the top quartile (proportionately to their earnings). Full response as baseline. Decomposed into
response to changes in consumption policies (only c), shopping policies (only s), and the distribution of
households (only dist), holding the respective others constant at steady state levels.

This additional exercise shows that even with an identical decline in aggregate earnings
the incidence of the shock along the distribution of households matters for the cyclicality
of retail prices and markups.
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C.5 Additional Model Results

Figure 23: Prices Posted and Prices Paid in Response to a 1% Loss in Wealth
Note: Model implied response of an aggregate Laspeyres index P l

t =
∑J

j=1 CSS
j µl

jt∑J
j=1 CSS

j

of prices posted (PF
t )

and prices paid (PG
t ) to a proportionate 1% decrease in beginning of period assets a for each household.

Table 14: Earnings Losses for Great Recession Shock

z1 − z6 z7 z8 z9 z10 z11 z12 − z16

cumulative share 24% 34% 47% 60% 74% 84% 100%of households

linked percentile in
P20 P30 P40 P50+P60

2
P70 P80 P90Heathcote et al. (2020)

zt
zSS − 1

t = 1 (2008) -17.3% -7.4% -3.0% -4.3% -3% -3% -0.9%
t = 2 (2009) -43.4% -16.8% -13.3% -6.8% -6.6% -2.9% -2.9%
t = 3 (2010) -55.6% -23.7% -15.1% -8.5% -6.4% -4.6% -2.5%

Note: Calibration of earnings losses by productivity state in the Great Recession. Data moments
obtained from Heathcote et al. (2020).
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Table 15: Cross Market Shares – Model vs. Data

model data
market share of exp. quintile market share of exp. quintile
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

by basket
of expenditure
quintile

Q1 0.09 0.15 0.19 0.24 0.33 0.17 0.14 0.18 0.22 0.30
Q2 0.08 0.14 0.19 0.24 0.35 0.08 0.21 0.18 0.22 0.31
Q3 0.07 0.13 0.18 0.24 0.37 0.08 0.13 0.25 0.22 0.31
Q4 0.07 0.13 0.18 0.24 0.39 0.08 0.13 0.17 0.30 0.32
Q5 0.06 0.12 0.17 0.24 0.41 0.07 0.12 0.16 0.21 0.44

Note: Cross market shares are computed as the market share of a quintile for each variety averaged
by the expedniture shares in the consumption basket of another quintile. Data obtained from Nielsen
Consumer Panel waves 2007-2019, consumption baskets in the data defined at the barcode level.

Table 16: Earnings and Price Changes after Redistributive Policies (alternative τs)

τ = 0.05 τ = 0.10 τ = 0.15 τ = 0.20 τ = 0.25

expenditure ∆earn 16.66% 33.31% 49.97% 66.63% 83.29%
quintile 1 ∆P -0.08% -0.16% -0.23% -0.30% -0.37%

∆pG -0.23% -0.44% -0.65% -0.86% -1.05%
−∆P
|∆earn| 0.5% 0.5% 0.5% 0.5% 0.4%
−∆pG
|∆earn| 1.4% 1.3% 1.3% 1.3% 1.3%

expenditure ∆earn 5.22% 10.43% 15.65% 20.86% 26.08%
quintile 2 ∆P -0.09% -0.17% -0.25% -0.33% -0.41%

∆pG -0.25% -0.49% -0.72% -0.95% -1.17%
−∆P
|∆earn| 1.6% 1.6% 1.6% 1.6% 1.6%
−∆pG
|∆earn| 4.7% 4.7% 4.6% 4.6% 4.5%

expenditure ∆earn 1.91% 3.83% 5.74% 7.65% 9.57%
quintile 3 ∆P -0.09% -0.18% -0.27% -0.35% -0.43%

∆pG -0.26% -0.51% -0.76% -1.00% -1.24%
−∆P
|∆earn| 4.7% 4.7% 4.6% 4.6% 4.5%
−∆pG
|∆earn| 13.4% 13.3% 13.2% 13.1% 13.0%

expenditure ∆earn -0.15% -0.30% -0.45% -0.60% -0.75%
quintile 4 ∆P -0.09% -0.19% -0.28% -0.37% -0.46%

∆pG -0.27% -0.53% -0.80% -1.06% -1.31%
−∆P
|∆earn| 62.3% 62.0% 61.8% 61.4% 60.9$
−∆pG
|∆earn| 178.0% 177.3% 176.5% 175.4% 174.0%

expenditure ∆earn -2.06% -4.12% -6.18% -8.24% -10.30%
quintile 5 ∆P -0.10% -0.20% -0.30% -0.39% -0.49%

∆pG -0.28% -0.55% -0.85% -1.13% -1.40%
−∆P
|∆earn| 4.8% 4.8% 4.8% 4.8% 4.8%
−∆pG
|∆earn| 13.7% 13.7% 13.7% 13.7% 13.6%

Note: Average change in post-tax earnings (∆earn), grocery (∆pG), and aggregate Laspeyres price index
(∆P ) within each expenditure quintile in response to an earnings tax τ and budget neutral transfer.

76


	Introduction
	Related Literature

	The Mechanism: Price Posting with Search Frictions
	Retailers' Problem and Posted Price Distributions
	The Effect of Heterogeneous Shopping on Posted Prices

	Evidence on Shopping Effort and Price Distributions
	Shopping Effort across Households
	Demand Composition and Price Distributions

	A Theory of Inequality and Price Dispersion
	Households with Non-Homothetic Preferences and Shopping
	Equilibrium in the Goods Market and Return to Shopping
	Calibration
	Model Properties and Validation

	Implications for Expenditure Inequality
	Price Differences across Households
	Equilibrium Effects of Shopping on Inequality

	Implications for Average Prices and Markups
	Shopping and Prices over the Business Cycle
	Demand Composition Across Policy Regimes

	Conclusion
	Extensions to the Retailer Problem
	Entry and Fixed Cost of Operating
	Heterogeneous Marginal Cost
	Solving for the Distribution of Posted Prices
	Quantitative Results under Uniform Marginal Costs


	Empirical Appendix
	The Nielsen Dataset
	Local vs. National Average Prices
	Evidence on Demand Composition and Price Distributions
	Consumption Baskets and Separation in the Goods Market
	Price Differences

	Model Appendix
	Income Process
	Solution Method
	Welfare Implications
	Cyclicality of Retail Prices and Markups
	Additional Model Results


