Comments by Rafael Repullo on

Weighted Noise:

Discretion in Regulation

Sumit Agarwal, Bernardo Morais, Amit Seru, Kelly Shue

Tenth ECB Annual Research Conference

Frankfurt, 18 September 2025

Introduction

- Banking supervision combines hard with soft information
 - → Hard coming from (objective) accounting statements
 - → Soft coming from (subjective) supervisory assessments

Introduction

- Banking supervision combines hard with soft information
 - → Hard coming from (objective) accounting statements
 - → Soft coming from (subjective) supervisory assessments
- Outcome is summarized in a "rating" of the bank
 - → In US CAMELS' a number between 1 (best) and 5 (worst)

Introduction

- Banking supervision combines hard with soft information
 - → Hard coming from (objective) accounting statements
 - → Soft coming from (subjective) supervisory assessments
- Outcome is summarized in a "rating" of the bank
 - → In US CAMELS' a number between 1 (best) and 5 (worst)
- Characteristics of bank supervisors (examiners) in US
 - → Are rotated periodically among banks
 - → Exercise wide discretion

- How can we measure examiner discretion?
- Does examiner discretion matter for bank behavior?

- How can we measure examiner discretion?
- Does examiner discretion matter for bank behavior?
 - → Ex-post: in subsequent decisions on capital and lending
 - → Ex-ante: in prior decisions on capital and lending

- How can we measure examiner discretion?
- Does examiner discretion matter for bank behavior?
 - → Ex-post: in subsequent decisions on capital and lending
 - → Ex-ante: in prior decisions on capital and lending
- Does examiner discretion predict deterioration of performance?
 - → In terms of non-performing or delinquency ratios

- US banks must undergo on-site examinations on regular cycle
 - → Typically every 12 months

- US banks must undergo on-site examinations on regular cycle
 - → Typically every 12 months
- Except for largest banks, state and federal agencies are involved

- US banks must undergo on-site examinations on regular cycle
 - → Typically every 12 months
- Except for largest banks, state and federal agencies are involved
 - → Banks are rotated across examiners within an agency

- US banks must undergo on-site examinations on regular cycle
 - → Typically every 12 months
- Except for largest banks, state and federal agencies are involved
 - → Banks are rotated across examiners within an agency
 - → Banks are rotated across agencies in alternate years

- US banks must undergo on-site examinations on regular cycle
 - → Typically every 12 months
- Except for largest banks, state and federal agencies are involved
 - → Banks are rotated across examiners within an agency
 - → Banks are rotated across agencies in alternate years
 - → Concurrent exams (by both agencies) can happen, in which case they issue separate reports

- US banks must undergo on-site examinations on regular cycle
 - → Typically every 12 months
- Except for largest banks, state and federal agencies are involved
 - → Banks are rotated across examiners within an agency
 - → Banks are rotated across agencies in alternate years
 - → Concurrent exams (by both agencies) can happen, in which case they issue separate reports
 - → Disagreement across agencies can then be observed

- Outcome of examinations is a CAMELS rating from 1 to 5
 - → Capital adequacy
 - → Asset quality
 - \rightarrow Management
 - → Earnings
 - → Liquidity
 - → Sensitivity to market risk

- Outcome of examinations is a CAMELS rating from 1 to 5
 - → Capital adequacy
 - \rightarrow **A**sset quality
 - → Management
 - → Earnings
 - → Liquidity
 - → Sensitivity to market risk
- Ratings for each of the six components and the composite rating

Data (i)

- National Information Center of the Federal Reserve
 - → Sample period: 1998-2020
 - → Bank identity, lead examiner identity, exam date
 - → CAMELS rating (together with its components)

Data (i)

- National Information Center of the Federal Reserve
 - → Sample period: 1998-2020
 - → Bank identity, lead examiner identity, exam date
 - → CAMELS rating (together with its components)

Data (i)

- National Information Center of the Federal Reserve
 - → Sample period: 1998-2020
 - → Bank identity, lead examiner identity, exam date
 - → CAMELS rating (together with its components)
- Reports on Condition and Income: Call Reports
 - → Capital and leverage ratios
 - \rightarrow Return on assets
 - → Non-performing and delinquency ratios

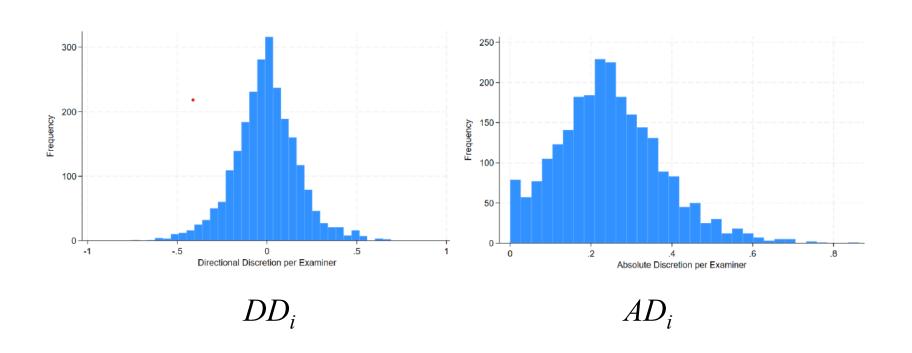
Data (ii)

- Final (cleaned) sample contains
 - \rightarrow 2,407 lead examiners and 14,679 examinations
 - → Average of six exams per lead examiner

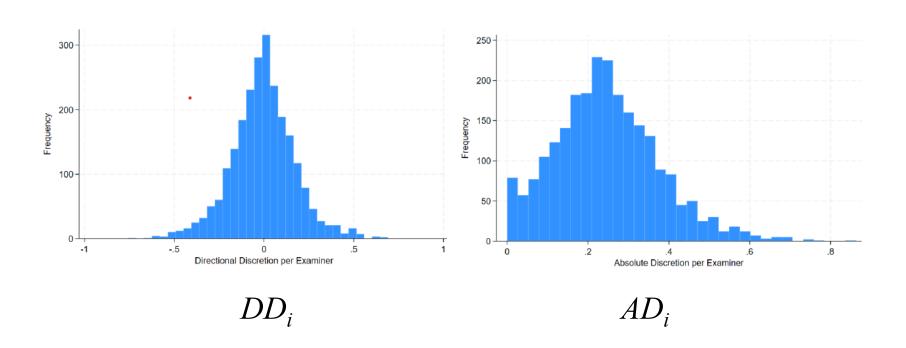
Data (ii)

- Final (cleaned) sample contains
 - \rightarrow 2,407 lead examiners and 14,679 examinations
 - → Average of six exams per lead examiner
- Distribution of ratings
 - \rightarrow Rating 1: 27%
 - \rightarrow Rating 2: 60%
 - \rightarrow Rating 3: 10%
 - \rightarrow Ratings 4 and 5: 3%

- Define
 - $\rightarrow R_{ijt}$ is rating by examiner i of bank j at date t


- Define
 - $\rightarrow R_{ijt}$ is rating by examiner i of bank j at date t
 - $\rightarrow \hat{R}_{ijt}$ is prediction of R_{ijt} using observable characteristics X_{jt-1}

- Define
 - $\rightarrow R_{ijt}$ is rating by examiner i of bank j at date t
 - $\rightarrow \hat{R}_{ijt}$ is prediction of R_{ijt} using observable characteristics X_{jt-1}
 - $\rightarrow Directional_Discretion_{ijt} = DD_{ijt} = R_{ijt} \hat{R}_{ijt}$


- Define
 - $\rightarrow R_{ijt}$ is rating by examiner i of bank j at date t
 - $\rightarrow \hat{R}_{ijt}$ is prediction of R_{ijt} using observable characteristics X_{jt-1}
 - $\rightarrow Directional_Discretion_{ijt} = DD_{ijt} = R_{ijt} \hat{R}_{ijt}$
 - $\rightarrow Absolute_Discretion_{ijt} = AD_{ijt} = |DD_{ijt}|$

- Define
 - $\rightarrow R_{ijt}$ is rating by examiner i of bank j at date t
 - $\rightarrow \hat{R}_{ijt}$ is prediction of R_{ijt} using observable characteristics X_{jt-1}
 - $\rightarrow Directional_Discretion_{ijt} = DD_{ijt} = R_{ijt} \hat{R}_{ijt}$
 - $\rightarrow Absolute_Discretion_{ijt} = AD_{ijt} = |DD_{ijt}|$
- These measures can be aggregated at examiner level

• Distribution of examiner discretion

• Distribution of examiner discretion

→ Examiner discretion has large variance

Does examiner discretion matter for ex-post bank behavior?

Does examiner discretion matter for ex-post bank behavior?

- Examiner directional discretion leads (after 4 quarters) to
 - → Higher Tier 1 capital ratio
 - → Lower loan growth

Does examiner discretion matter for ex-ante bank behavior?

Does examiner discretion matter for ex-ante bank behavior?

- Need a proxy of examiner uncertainty (at the state level)
 - → Average of absolute discretion over last 5 years
 - → SD of directional discretion over last 5 years

Does examiner discretion matter for ex-ante bank behavior?

- Need a proxy of examiner uncertainty (at the state level)
 - → Average of absolute discretion over last 5 years
 - → SD of directional discretion over last 5 years
- Both proxies lead to
 - → Higher Tier 1 capital ratio
 - → Lower loan growth

Does examiner discretion predict future performance?

Does examiner discretion predict future performance?

- Exam directional discretion leads to
 - → Higher ratings (bad)
 - → Higher non-performing loan ratios
 - → Higher delinquency ratios

- Examiner rotation is random
 - → Examiner leave-out-mean ratings uncorrelated with observable measures of bank quality

- Examiner rotation is random
 - → Examiner leave-out-mean ratings uncorrelated with observable measures of bank quality
- Regressing the composite rating on its six component ratings
 - → Highest weight is in the Management rating

- Examiner rotation is random
 - → Examiner leave-out-mean ratings uncorrelated with observable measures of bank quality
- Regressing the composite rating on its six component ratings
 - → Highest weight is in the Management rating
 - → Examiners with higher absolute discretion place greater weight in the Management rating

- Examiner rotation is random
 - → Examiner leave-out-mean ratings uncorrelated with observable measures of bank quality
- Regressing the composite rating on its six component ratings
 - → Highest weight is in the Management rating
 - → Examiners with higher absolute discretion place greater weight in the Management rating
 - → The most subjective component

- For smaller sample of concurrent (state and federal) ratings
 - → Disagreement is common (28% of cases)
 - → Especially in the Management rating (31%)

Structure of paper

- Introduction
- Institutional background
- Conceptual framework
- Results
- Conclusion

This discussion

- Two parts
 - → Review of conceptual framework
 - → Comments on the empirical results

Part 1 Conceptual framework

Comments on conceptual framework (i)

• Goal: "Distinguish between informative variation arising from soft information and unproductive variation arising from noise"

Comments on conceptual framework (i)

- Goal: "Distinguish between informative variation arising from soft information and unproductive variation arising from noise"
- Claim: This is <u>not</u> possible, since soft information is noisy signal of safety and soundness

Comments on conceptual framework (ii)

- Reference to an "unobserved optimal rating decision"
 - → What do you mean by optimal?

Comments on conceptual framework (ii)

- Reference to an "unobserved optimal rating decision"
 - → What do you mean by optimal?
- Examiner rating as a random deviation from this decision
 - → How is soft information incorporated into this framework?

• Let us define (omitting subindexes for simplicity)

Z = Underlying state of the bank (a latent variable)

• Let us define (omitting subindexes for simplicity)

Z = Underlying state of the bank (a latent variable)

X = Hard information on the state of the bank

• Let us define (omitting subindexes for simplicity)

Z = Underlying state of the bank (a latent variable)

X = Hard information on the state of the bank

S = Soft information on the state of the bank

• Let us define (omitting subindexes for simplicity)

Z = Underlying state of the bank (a latent variable)

X = Hard information on the state of the bank

S = Soft information on the state of the bank

• Let us assume (after suitable normalization)

$$\begin{bmatrix} Z \\ X \\ S \end{bmatrix} \sim N \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho_{ZX} & \rho_{ZS} \\ \rho_{ZX} & 1 & \rho_{XS} \\ \rho_{ZS} & \rho_{XS} & 1 \end{bmatrix}$$

- Let us define
 - → Bank rating

$$R = E[Z|X,S]$$

- Let us define
 - → Bank rating

$$R = E[Z|X,S]$$

→ Prediction of bank rating

$$\hat{R} = E[R|X]$$

- Let us define
 - → Bank rating

$$R = E[Z|X,S]$$

→ Prediction of bank rating

$$\hat{R} = E[R|X]$$

$$R = \alpha X + \beta S$$

- Let us define
 - → Bank rating

$$R = E[Z|X,S]$$

→ Prediction of bank rating

$$\hat{R} = E[R|X]$$

$$R = \alpha X + \beta S$$

$$\hat{R} = E[\alpha X + \beta S | X]$$

- Let us define
 - → Bank rating

$$R = E[Z|X,S]$$

→ Prediction of bank rating

$$\hat{R} = E[R|X]$$

$$R = \alpha X + \beta S$$

$$\hat{R} = E[\alpha X + \beta S | X] = \alpha X + \beta E[S | X]$$

- Let us define
 - → Bank rating

$$R = E[Z|X,S]$$

→ Prediction of bank rating

$$\hat{R} = E[R|X]$$

$$R = \alpha X + \beta S$$

$$\hat{R} = E[\alpha X + \beta S | X] = \alpha X + \beta E[S | X] = \alpha X + \beta \rho_{XS} X$$

• We can now define

Directional Discretion =
$$DD = R - \hat{R} = \beta(S - \rho_{XS}X)$$

• We can now define

$$Directional _Discretion = DD = R - \hat{R} = \beta(S - \rho_{XS}X)$$

Absolute_Discretion =
$$AD = |DD| = |\beta(S - \rho_{XS}X)|$$

• We can now define

$$Directional _Discretion = DD = R - \hat{R} = \beta(S - \rho_{XS}X)$$

Absolute_Discretion =
$$AD = |DD| = |\beta(S - \rho_{XS}X)|$$

Note that we have

$$E[DD] = 0$$

• We can now define

$$Directional _Discretion = DD = R - \hat{R} = \beta(S - \rho_{XS}X)$$

Absolute_Discretion =
$$AD = |DD| = |\beta(S - \rho_{XS}X)|$$

Note that we have

$$E[DD] = 0$$

→ As shown in previous figure

- Framework can incorporate examiners' biases
 - \rightarrow As those noted in Agarwal et al. (2014)

- Framework can incorporate examiners' biases
 - \rightarrow As those noted in Agarwal et al. (2014)
 - → Federal examiners are tougher than State examiners

- Framework can incorporate examiners' biases
 - \rightarrow As those noted in Agarwal et al. (2014)
 - → Federal examiners are tougher than State examiners
- Define bank rating as

$$R = E[Z|X,S] + B$$

 \rightarrow where $B \in \{B_L, B_H\}$ is the examiner's bias (with $B_L \leq B_H$)

- Framework can incorporate examiners' biases
 - \rightarrow As those noted in Agarwal et al. (2014)
 - → Federal examiners are tougher than State examiners
- Define bank rating as

$$R = E[Z|X,S] + B$$

- \rightarrow where $B \in \{B_L, B_H\}$ is the examiner's bias (with $B_L \leq B_H$)
- If $\rho_{XB} = 0$, then one can show that

$$E[DD_L] \le E[DD_H]$$

Summing up

• Alternative setup provides a simpler (and better) framework for understanding the empirical results in the paper

Part 2 Comments on empirical results

- CAMELS ratings are discrete (1–5)
 - \rightarrow Determinants of $1 \rightarrow 2$ different from those of $2 \rightarrow 3$

- CAMELS ratings are discrete (1–5)
 - \rightarrow Determinants of 1 \rightarrow 2 different from those of 2 \rightarrow 3
 - \rightarrow Determinants of 2 \rightarrow 3 different from those of 3 \rightarrow 2

- CAMELS ratings are discrete (1–5)
 - \rightarrow Determinants of 1 \rightarrow 2 different from those of 2 \rightarrow 3
 - \rightarrow Determinants of 2 \rightarrow 3 different from those of 3 \rightarrow 2
 - → Better use discrete choice models

- Data on Directional Discretion could be exploited more
 - → Correlation with observables (beyond State vs Federal)

- Data on *Directional_Discretion* could be exploited more
 - → Correlation with observables (beyond State vs Federal)
 - → Federal Reserve, FDIC, OCC
 - → Date and state dummies
 - → Macroeconomic variables

- Claim that greater *Absolute_Discretion* only adds noise
 - → without improving forecast accuracy

- Claim that greater Absolute Discretion only adds noise
 - → without improving forecast accuracy
- Claim should be toned down
 - → difference in regression coefficients marginally significant

- Claim that greater *Absolute_Discretion* only adds noise
 - → without improving forecast accuracy
- Claim should be toned down
 - → difference in regression coefficients marginally significant
- Also note that noise encourages prudent bank behavior
 - → Higher capital and lower loan growth
 - \rightarrow See Repullo (2025) for a theoretical model

Concluding remarks

- Paper addresses novel issue with an amazing database
 - → Many interesting results
 - → More work can be done along these lines

- Paper addresses novel issue with an amazing database
 - → Many interesting results
 - → More work can be done along these lines
- Intermediate goal for policy
 - → Improve design of supervision

- Paper addresses novel issue with an amazing database
 - → Many interesting results
 - → More work can be done along these lines
- Intermediate goal for policy
 - → Improve design of supervision
- Final goal for policy
 - → Conduct welfare analysis of bank supervision

• Minor suggestion for the title of the paper

• Minor suggestion for the title of the paper

→ Replace

"Discretion in Regulation"

 \rightarrow by

"Discretion in Bank Supervision"

- Minor suggestion for the title of the paper
 - → Replace

"Discretion in Regulation"

 \rightarrow by

"Discretion in Bank Supervision"

Major suggestion for the ECB

- Minor suggestion for the title of the paper
 - → Replace

"Discretion in Regulation"

 \rightarrow by

"Discretion in Bank Supervision"

- Major suggestion for the ECB
 - → Start exploiting SSM data on bank supervision
 - → Effect of the composition of the Joint Supervisory Teams