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1 Introduction

The surge in inflation following the pandemic stands out as one of the most remarkable
macroeconomic developments in recent years. U.S. consumer prices rose by 10% in 2021,
an inflation rate not seen since the 1970s. Economists have focused on several potential
root causes, pointing out the concurrence of adverse supply shocks—such as the disrup-
tions in the global supply chain and increases in energy prices—and higher demand during
the economic recovery due to pent-up forces and expansionary fiscal policies. Consider-
ably less attention, however, has been drawn to the role played by monetary policy during
this episode. Indeed, the Federal Reserve, similarly to other central banks in advanced
economies, did not increase interest rates throughout 2021 despite the observed large in-
creases in inflation. These actions were consistent with the new monetary policy framework
adopted by the Fed in August 2020 and centered on the concept of flexible average inflation
targeting. Did this episode trigger a change in the private sector’s views about how the
Federal Reserve would tackle inflation going forward? To what extent did these changes
exacerbate the inflationary effects of the demand and supply shocks that hit the U.S. econ-
omy?

In this paper, we address these questions in two steps. First, we develop a methodology
that exploits high-frequency financial market data to detect shifts in financial markets’
perception of the Fed reaction function. Using the term structure of interest rates for
nominal and inflation-protected bonds, we show strong and robust evidence of a shift in the
perceived monetary rule over the 2020-2022 period, with financial markets viewing the Fed
as substantially more tolerant to short- and medium-term fluctuations in inflation. In the
second step, we assess the macroeconomic effects of this shift in policy by combining this
high-frequency measurement with a standard New Keynesian model with regime switches
in the monetary policy rule. Through the lens of this model, we find that changes in
monetary policy played a first-order role during the episode. In particular, we estimate
that inflation would have peaked at about 5% in 2021 if the Fed had followed its historical
reaction function.

To illustrate our approach to detecting shifts in the Fed’s reaction function, let’s assume
for now that the Federal Reserve follows a simple Taylor rule

it = i⋆ + ψπ(πt − π⋆) + εm,t, (1)

where it is the Fed funds rate at date t, πt is the inflation rate, π⋆ is the inflation target, i⋆ is
the "natural" nominal interest rate, and εm,t is an i.i.d. monetary shock capturing transitory
deviations of the policy rate from its systematic component. We will later discuss how
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this approach extends to more comprehensive statistical descriptions of monetary policy,
including features such as interest rate smoothing, a time-varying intercept, and an output
gap component.

Our objective is to test whether the private sector’s view of the Fed’s reaction function
changed after 2020—in this simple case a shift in ψπ—and, if a change is identified, to
determine the perceived duration of this new "regime".1 This is hard to do using realized
data: we only have a few observations of short-term nominal interest rates and inflation in
the post-2020 period, and their informational content is limited given that nominal interest
rates were at the zero lower bound until March 2022. In addition, such a short time period
does not allow one to measure the perceived persistence of the new policy regime, as for
that we would need multiple spells.

One key insight of our paper is that these challenges can be addressed by leveraging
high-frequency bond market data. Specifically, we can take time-t expectations of nominal
interest rates and inflation at some future date k > t and express the Taylor rule (1) as

∆Et[ik] = ψπ∆Et[πk], (2)

where ∆Et[xk] ≡ Et[xk]−Et−1[xk] is the daily forecast revision of variable x at date k. From
the term structure of nominal and inflation-protected bonds, we can retrieve daily "risk-
neutral" expectations of these variables, and use them to construct proxies for the variables
in equation (2).

Every day, market participants revise their beliefs about future inflation and future nom-
inal interest rates, and equation (2) clarifies that the comovement between these forecast
updates is informative about the markets’ beliefs on the Fed’s reaction function. In ad-
dition, expectations data allow us to address the two challenges described above. First,
expected future nominal interest rates move over time even if current interest rates are at
the zero lower bound; for this reason, the former are more informative than the latter for
the purpose of detecting shifts in the policy rule. Second, by varying the forecast horizon
k we can obtain information on how long investors expected a change in ψπ to persist.

We start our empirical analysis by studying the relationships between market-implied
expectations of future nominal interest rates and future inflation. We document two main
facts, which we report in Figure 1. First, as we can see from panel (a) of the figure, there is a
remarkably strong linear relationship between these two variables, suggesting that a simple

1As we will discuss later in the paper, a change in the monetary policy rule in a baseline New Keynesian
model is more consequential for output and inflation when it is expected to be in place for longer. Therefore,
measuring the persistence of the shift in the monetary policy rule is a critical input for answering the question
that we pose in this paper.
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Figure 1: Market-based expectations of nominal interest rates and inflation
Notes: Panel (a) shows a scatter plot of daily market-based expectations of average nominal interest rates
and average inflation over a ten-year horizon for two sub-samples, Jan 2017- Dec 2019 (blue dots) and Aug
2020- Feb 2022 (red dots). Panel (b) reports estimates of ψπ in different sub-samples. See Section 2 for a
description of the data and the estimation of ψπ .

Taylor rule as that of equation (1) is a good framework to process these data. Second, the
slope of this relationship in the 2020-2022 period was much flatter than that of preceding
years. Indeed, ordinary least squares (OLS) estimates of ψπ reveal a remarkable stability in
this coefficient up to the pandemic—-which was centered around a value of 1.5 for almost
twenty years—and a sizable drop afterward, see panel (b) of Figure 1. In addition, when
varying the maturity of bonds, we find that these shifts in the slope are relevant for a
forecast horizon of up to 5 years and are not statistically significant at longer horizons.

From the perspective of equation (1), this evidence indicates that financial markets per-
ceived the Fed after 2020 to be systematically less responsive to movements in current
inflation than before in the short-medium term—a perceived change in the Fed reaction
function. However, there are other plausible explanations not related to a change in Fed
policy that could also explain a weaker relationship between the expected future nomi-
nal interest rate and expected future inflation. In the paper, we review these alternative
hypotheses and find that our main results hold even after we control for those.

First, the Taylor rule of equation (1) could be misspecified, and the reduction in the
OLS estimates of ψπ could be the result of this misspecification rather than an actual shift
in the policy of the Federal reserve. Specifically, suppose that the Taylor rule in (1) also
included an output gap component, in line with the dual mandate of the Fed. Then, the
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OLS estimates of ψπ would be asymptotically biased,

ψ̂OLS
π

p→ ψπ + ψy
Cov (∆Et[πk], ∆Et[ŷk])

Var (∆Et[πk])
,

where ŷk denotes the output gap. A lower ψ̂OLS
π across sub-samples could then be the

result of a reduction in the correlation between inflation and the output gap rather than a
change in the conduct of monetary policy. This explanation is consistent with the view that
supply shocks have become more prevalent in the U.S. economy over the 2020-2022 period
(Bernanke and Blanchard, 2023), as they move output and inflation in opposite direction.

In order to control for this concern, we test for the stability of the monetary policy rule
across sub-samples by estimating ψπ only using forecasts revisions in a window around
"monetary events", such as releases of statements and minutes of Federal open market
committee meetings. To the extent that these events identify forecast updates conditional on
monetary shocks, we could use these data to test for a structural break in their relationship
and be robust to the aforementioned criticism—as we would be conditioning on the same
type of demand shock before and after the break. Following this approach, we still find a
sizable and significant reduction in the estimate of ψπ in the post-2020 period.

In addition to a potential misspecification of the policy rule, other factors could explain
a weaker relationship between expected nominal interest rates and expected inflation. For
instance, this weakening could result from a higher prevalence of the zero lower bound
constraint post-2020 or changes in the pattern of risk and liquidity premia in financial
markets, making risk-neutral expectations a less reliable proxy for actual expectations. We
show that our key findings remain robust even after accounting for these concerns. First,
our main results persist when excluding the [0-2] year forward horizon, which is most
affected by expectations of the zero lower bound constraint (Mertens and Williams, 2021).
Second, most of the estimated effects are concentrated in the [3-5] year forward horizon
and diminish as we move to longer maturities. If risk premia were driving these patterns,
we would instead expect the effects to be more pronounced at longer horizons, as bond
risk premia are highly correlated across maturities and tend to increase with maturity
(Cochrane and Piazzesi, 2005).

Finally, we study the macroeconomic implications of these perceived changes in the
Fed reaction function by enriching the canonical three-equations New Keynesian model
with a two-regime monetary policy rule: a traditional Taylor rule and an average inflation
targeting rule in which nominal interest rates respond to deviations of a backward-looking
average inflation from its target—a way of capturing a key feature of the new framework
announced in 2020. We discipline the parameters of this regime via indirect inference by
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fitting the evidence discussed earlier and use the parametrized model to perform policy
counterfactuals. In an event study, we find that inflation would have been substantially
less responsive to the demand and supply shocks hitting the economy if the Fed responded
according to the historical Taylor rule: at peak, annualized inflation would have reached
5% in this scenario instead of the observed 9%.

We show that the large effects of these policy changes on inflation in the baseline New
Keynesian model are due to the interplay of two forces. First, the shift to a less responsive
policy regime lowers expectations of real interest rates in the short and medium run. Sec-
ond, we show that inflation in the baseline New Keynesian model is extremely sensitive
to changes in future real interest rates, with the responsiveness increasing in the horizon,
a feature that is due to the interplay between the "forward guidance puzzle" (Del Negro,
Giannoni, Patterson et al., 2012) and the forward-looking nature of inflation via the Phillips
curve—a forward guidance puzzle "squared". While we believe that the model’s implica-
tions for the effects of the policy shift on the term structure of interest rates are realistic,
as they are informed by our empirical analysis, the sensitivity of inflation to long-term real
interest rates implied by this class of models is likely too large, making these results an
upper bound on the role of monetary policy during this episode.

Related literature. There are several recent papers studying the drivers of U.S. inflation
post 2020. A series of papers have focused on the importance of sectoral shocks and ca-
pacity constraints, for instance the work of Bohr (2024), Comin, Johnson, and Jones (2023),
Ferrante, Graves, and Iacoviello (2023) and Di Giovanni, Kalemli-Ozcan, Silva, and Yildirim
(2022). These forces are isomorphic to endogenous cost-push shocks in the canonical one-
sector model (Guerrieri, Lorenzoni, Straub, and Werning, 2021), which generate inflation-
ary pressures. Another branch of the literature has focused on mechanisms that make the
Phillips curve steeper, amplifying the pass-through of shocks onto prices. See for exam-
ple Gagliardone and Gertler (2023) and Benigno and Eggertsson (2023). The contribution
of our paper is to quantify the role of monetary policy. Specifically, we provide evidence
of a sizable shift in investors’ beliefs about the conduct of monetary policy during this
episode.2 In addition, we show that these shifts in beliefs are quite consequential for in-
flation dynamics when fed through a benchmark New Keynesian model.3 Our results are

2This finding contrasts the quite limited impact that the Federal Reserve’s announcements of the new
strategy had on household expectations, see Coibion, Gorodnichenko, Knotek, and Schoenle (2023).

3Doh and Yang (2023) study how different assumptions about a Taylor rule with average inflation target-
ing, for example a lengthening of the horizon of inflation targeting or a reduction in the inflation feedback
parameter in the Taylor rule, can generate larger response of inflation to shocks. Differently from them, our
paper introduces a methodology to quantify these shifts in the rule and assess the impact of these changes
on macroeconomic outcomes.
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consistent with Gagliardone and Gertler (2023), Comin, Johnson, and Jones (2023) and Gi-
annone and Primiceri (2024), who also document an important role for monetary policy
during this episode.

Our paper also contributes to the literature on the estimation of monetary policy rules. In
a now classic paper, Clarida, Gali, and Gertler (2000) identify substantial differences in the
monetary policy reaction function before and after Volcker’s appointment as Fed Chairman
and quantify the implication of these changes for macroeconomic volatility through the lens
of a New Keynesian model. Our analysis shares a similar objective but introduces a differ-
ent methodology. Specifically, because we are interested in testing a recent shift in policy,
we cannot use realized retrospective data as in Clarida, Gali, and Gertler (2000); instead,
we use real-time bond market data and estimate a shift in the Fed reaction function using
expectations. Starting with Hamilton, Pruitt, and Borger (2011), recent literature has used
expectations data—either market-based or surveys—to quantify aspects of the conduct of
monetary policy. King and Lu (2022) use the term structure of inflation expectations by
professional forecasters to estimate the reputation of the central bank within the context of
a model where the policymaker’s type is private information, while Mertens and Zhang
(2023) solve a New Keynesian model in terms of risk-neutral expectations and estimate it
using the term structure of nominal and real yields. Campos, Fernández-Villaverde, Nuño,
and Paz (2024) use market-implied expectations of nominal interest rates and inflation to
measure the perceived policy response to changes in the natural rate of interest.

The paper more connected to our work is Bauer, Pflueger, and Sunderam (2022). These
authors use cross-sectional variation in the forecast of future nominal interest rates, infla-
tion, and output—up to five quarters ahead—by professional forecasters to estimate time-
variation in the parameters of a Taylor rule. We view our approach as complementary, as
it builds on different data and methodology to estimate a related object. First, we rely on
a different variation in the data—the comovement of market-based forecast updates about
nominal interest rates and inflation—to estimate the sensitivity of the former to the latter.
Second, our approach focuses on the medium to long-run forecast horizon, which is less
affected by possible biases induced by the zero lower bound constraint. Third, by focus-
ing on the entire term structure, we can assess the perceived persistence of a shift in the
monetary policy regime. Aside from the methodological differences, the two papers differ
in their objectives and scope: Bauer, Pflueger, and Sunderam (2022) focus on assessing the
impact of these perceived shifts in the monetary policy rule on financial markets’ outcomes
while we incorporate this measurement in a baseline New Keynesian model to study their
impact on macroeconomic variables such as inflation and the output gap.

As we formally show in Section 3, the absence of market-based measures of output gap
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expectations introduces a source of bias when trying to estimate the Fed reaction function.
As we explained earlier, it is still possible to test for shifts in the monetary policy rule
using high-frequency monetary identification techniques (Kuttner, 2001; Nakamura and
Steinsson, 2018; Bauer and Swanson, 2023). The main innovation in our approach is that
we use these monetary events to test for shifts in the systematic component of the Fed
reaction function rather than to measure monetary shocks and their propagation on the
economy. To the best of our knowledge, we are the first to use these techniques for this
purpose.

Finally, there is a large literature studying the macroeconomic effects of shifts in the
monetary policy rule. For example, Bianchi (2013), Bianchi and Ilut (2017), Bianchi, Lettau,
and Ludvigson (2022), Bianchi, Ludvigson, and Ma (2022), and Hack, Istrefi, and Meier
(2023). Our finding that a sizable component of the increase in inflation in 2021-22 is
attributable to a change in the policy rule is consistent with the findings in Bianchi, Faccini,
and Melosi (2023). That paper links the perceived increase in the Fed Dovishness to an
increase in the amount of unfunded fiscal spending during the pandemic. Our results are
consistent with this view, although our interpretation links the change in the perceived
Dovishness to the adoption of the flexible average inflation targeting regime. Relative to
this work, our contribution is to provide direct evidence of the monetary policy shift using
bond price data.

2 Bond market views of the Fed

This section is divided in three parts. Section 2.1 describes the data used in the empirical
analysis. Section 2.2 presents our approach to detect shifts in the Fed reaction function and
presents the baseline results. Section 2.3 discusses the results in light of the policy changes
introduced by the Federal Reserve in August 2020.

2.1 The data

We use daily data on zero-coupon nominal and real bond (Treasury Inflation-Protected
Securities, or "TIPS") yields for different maturities constructed by Gürkaynak, Sack, and
Wright (2007, 2010). We denote by i(k)t the zero-coupon yield on a nominal bond maturing
k years from date t and by r(k)t the zero-coupon yield on a real bond maturing k years from
date t. The difference between these two reflects the inflation compensation required by
investors for holding the inflation risk embedded in the nominal bond, which we denote
by IC(k)

t ≡ i(k)t − r(k)t . Our sample runs from January 3rd, 2000, to February 28th, 2022. The
start of the sample is restricted by the fact that TIPS were only issued starting in 1997 and
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that, initially, the market was quite small and illiquid with only a few outstanding securities
(see Sack and Elsasser (2004), for example). We end the sample right at the lift-off from the
zero lower bound period.4

We can use these data to construct the expectation of the average short-term nominal
interest rate and of the average inflation rate over the life-time of the bonds. Specifically,
from standard asset pricing relationships, we have

i(k)t = Et
[
it,k
]
+ ηt,k (3)

IC(k)
t = Et [πt,k] + ιt,k, (4)

where īt,k and π̄t,k denote average nominal interest rate and inflation over the next k years,
Et [·] denotes the expectation conditional on time t information, and ηt,k and ιt,k are, respec-
tively, the risk premium embedded in nominal and real bonds with a residual maturity of
k years. Equations (3) and (4) show that the term structures of nominal yields and inflation
compensation contain potentially useful information for a real-time read on the future path
of nominal short term interest rates and inflation expected by investors.

In our baseline results, we will ignore time-variation in the term and inflation risk pre-
mium and treat daily changes in nominal bond yields and inflation compensation as fore-
cast revisions of future nominal interest rates and future inflations. That is, we will assume
that ηt,k and ιt,k are constant over time. This assumption is not innocuous: several studies
have found evidence that nominal bond yields and inflation compensation also reflect time-
varying term and inflation risk premiums, especially conditioning on changes in monetary
policy shocks, see Kim and Wright (2005), Piazzesi and Swanson (2008) Adrian, Crump,
and Moench (2013), Abrahams, Adrian, Crump, Moench, and Yu (2016), Cieslak and Po-
vala (2015), D’Amico, Kim, and Wei (2018), Cieslak and McMahon (2023) and Kekre, Lenel,
and Mainardi (2024) among many others. In Section 3, we will explicitly control for time
variation in risk premia.

Figure 2 plots the time series of the nominal bond yield and the inflation compensa-
tion measure for bonds with time to maturity of five and ten years. Nominal yields have
trended downward for most of the sample. The inflation compensation measure has been
fluctuating around two percent, with a sustained period of low inflation expectations be-
tween 2015 and 2020 and values substantially above this number during the recovery from
the pandemic. Two episodes stand out as outliers: during the financial crisis in 2008 and

4We end the sample then because it is unclear whether the market interpreted the rapid lift-off of interest
rates as a return to the former monetary regime or not. Bauer, Pflueger, and Sunderam (2024) detect an
increase in the sensitivity of nominal interest rates to inflation after March 2023 using both survey data and—
similarly to our analysis—market-based expectations. See also Kroner (2023). Extending our sample to study
this issue is an avenue for future work.

8



0

2

4

6

8

 

1/1/2000 7/1/2005 1/1/2011 7/1/2016 1/1/2022

Year

Nominal bond yields

−2

0

2

4

 

1/1/2000 7/1/2005 1/1/2011 7/1/2016 1/1/2022

Year

10 years

5 years

Inflation compensation

Figure 2: Nominal bond yields and Inflation compensation
Notes: The left panel plots 5- and 10-year zero-coupon nominal Treasury yields, while the right panel
plots 5- and 10-year inflation compensation (the difference between nominal Treasury and TIPS yields).
The data are from Gürkaynak, Sack, and Wright (2007, 2010) and cover the period January 2000 through
March 2022.

the Covid outbreak in early 2020, inflation compensation measures plummeted. TIPS, at
times, trade at a discount compared to nominal Treasury securities due to their relative
illiquidity, which leads to a downward bias in the expected inflation measure computed
using IC(k)

t . The sharp declines in 2008 and in the first half of 2020 most likely reflected
an increase in this liquidity discount due to the financial turmoil rather than a genuine
reduction in inflation expectations. To avoid these periods affecting our results, we exclude
2008 and the first half of 2020 (January 1 to July 31st) from our sample.

2.2 Identifying shifts in the monetary policy rule

For our baseline analysis we assume that monetary policy is governed by the following
rule

iτ = ρiiτ−1 + (1 − ρi) [i⋆τ + ψπ (πτ − π⋆)] + εm,τ, (5)
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where iτ is the nominal interest rate prevailing in year τ, (πτ − π⋆) is the deviation of
inflation from its target, i⋆τ is the “natural" interest rate—the nominal interest rate prevailing
in an economy with no price rigidities—and εm,τ is a transitory deviation from the rule—a
monetary shock. In what follows, we discuss how we can use the data presented earlier to
detect changes in the Fed reaction function.

First, we take the k-years ahead expectations of both side of equation (5) at date t. For
variable x, we denote such expectation by Et[xk]. Next, we construct the daily forecast
updates of these variables by first-differencing them with respect to t—∆Et[xk] = Et[xk]−
Et−1[xk]. So, we can rewrite equation (5) as

∆Et [ik − ρiik−1] = (1 − ρi) {∆Et[i⋆k ] + ψπ∆Et [πk]}+ ∆Et [εm,k] . (6)

We then make two assumptions that we think are reasonable when working with the vari-
ables expressed in first-difference, and that allow us to further simplify equation (6).

First, we assume that forecast revisions of future monetary policy shocks are also small,
∆Et [εm,k] = 0. This assumption clearly holds for most days in our sample—as, on a
typical day, there are no forecast revisions about εm,k—and it is more generally satisfied as
long as the forecast horizon k is large compared to the persistence of the monetary policy
shocks. For example, if monetary shocks follow an AR(1) process with persistence ρm,
then the forecast revisions conditional on a monetary shock of size δt at date t would be
∆Et [εm,k] = (ρm)

k δt, which will be close to zero as long as k is large relative to ρm. In
practice, monetary shocks commonly estimated in the literature display only mild serial
correlation (see Coibion and Gorodnichenko (2012) for example), suggesting that k need
not be too large for this second assumption to be reasonable.

Second, we assume that daily forecast revisions of the natural interest rate are negligible
at daily frequencies, that is ∆Et[i⋆k ] = 0. We think this is reasonable since most of the
literature considers the natural rate of interest i⋆t to be a very slow-moving process driven
by secular forces, such as demographics and the patterns of capital flows across countries,
see, for example, Laubach and Williams (2003, 2016) and Del Negro, Giannone, Giannoni,
and Tambalotti (2017).

Given these two assumptions and the fact that equation (6) holds for every k, we have

∆Et

[
it,k − ρi

k − 1
k

it,k−1

]
= ψπ∆Et [(1 − ρi)πt,k] , (7)

where xt,k, is the average of variable x between now and k years ahead of now, and we use
the fact that it−1 is predetermined at t. By taking averages over different horizons, we can
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smooth out any idiosyncratic behavior of forward rates across the maturity structure, and
obtain estimates for ψπ using the most liquid traded securities. Specifically, in our baseline
analysis, we will consider expectations constructed using nominal and inflation-protected
bond yields with a residual maturity of ten years.

In order to estimate equation (7), we proxy for ∆Et
[
it,k
]

and ∆Et [πt,k] using daily
changes in nominal bond yields and inflation compensation for a bond with residual time
to maturity of k years. To minimize the impact of outliers, we winsorize these variables at
the 1st and 99th percentile. Since equation (5) is specified at an annual frequency, we fix ρi

to 0.8 following previous research and construct a time series for ∆Et

[
it,k − ρi

k−1
k it,k−1

]
and

∆Et [(1 − ρi)πt,k].5 We can then estimate ψπ over different sub-samples and check whether
the monetary policy rule perceived by financial markets investors changed over time.

We partition the sample 2000-2022 into 6 different sub-samples of approximately equal
length (4 years), and estimate by ordinary least squares the relationship

∆Et

[
it,k − ρi

k − 1
k

it,k−1

]
= c +

6

∑
s=1

ψπ,s (Dt,s × ∆Et [(1 − ρi)πt,k]) + et, (8)

where Dt,s takes a value of 1 if period t is in subsample s and zero otherwise.6

Column (1) of Table 1 reports the estimates of these coefficients estimated using 10-
year averages, which we also reported graphically in panel (b) of Figure 1. We observe
a remarkable stability of ψπ,s over the twenty years preceding the pandemic. Indeed, we
cannot reject the null hypothesis that ψπ = 1.55 in any of these sub-periods at conventional
levels. Even more remarkably, we observe a sizable fall in the coefficient post-2020, with a
point estimate of 1.02.

Next, we exploit the term structure of the data and estimate equation (8) using expec-
tations constructed over relatively short-term ([0-2] years forward), medium-term ([3-5]
years forward), and long-term ([6-10] years forward) horizons.7 The results are reported in
columns (2)-(4) of Table 1.

This exercise reveals an interesting pattern. Column (2)—which reports the results for
the [0-2] horizon—shows that the coefficient ψπ is generally smaller and it exhibits more
variation over time compared to the baseline specification. Notably, nominal interest rates
were not sensitive to changes in inflation compensation over the 2012-2015 subsample,

5As we discuss in Section 3.4, our main results are robust to varying ρi in the empirically plausible range
between 0.7 and 0.9.

6Results are very similar when we use sub-samples of 3 or 5 years.
7Note that we need to use TIPS with a residual maturity of 2 years in order to construct inflation com-

pensation at the [0, 2] and [3, 5] forward horizon. Because short-maturity TIPS were not traded in the earlier
part of our sample, we estimate these specifications only using post-2003 data.
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Table 1: Estimates of equation (8)

(1) (2) (3) (4)
10 years averages [0-2] years [3-5] years [6-10] years

ψπ,2000−2003
1.63∗∗∗ 1.61∗∗∗

(0.04) (0.07)

ψπ,2004−2007
1.41∗∗∗ 1.21∗∗∗ 2.11∗∗∗ 1.67∗∗∗

(0.10) (0.18) (0.20) (0.11)

ψπ,2008−2011
1.55∗∗∗ 1.03∗∗∗ 2.41∗∗∗ 2.02∗∗∗

(0.07) (0.14) (0.13) (0.09)

ψπ,2012−2015
1.48∗∗∗ −0.06 1.94∗∗∗ 2.11∗∗∗

(0.11) (0.12) (0.18) (0.14)

ψπ,2016−2019
1.55∗∗∗ 1.06∗∗∗ 1.87∗∗∗ 1.87∗∗∗

(0.09) (0.18) (0.16) (0.12)

ψπ,2020−2022
1.02∗∗∗ 0.06 1.07∗∗∗ 1.50∗∗∗

(0.11) (0.18) (0.20) (0.14)

R2 0.41 0.07 0.26 0.34
N 4019 3249 3249 4019

Note: The top panel of the table reports the estimates of ψπ,s in equation (8) while the bottom panel
reports estimates of ψπ and d in equation (9). Expectations are constructed using bond yields with a
residual maturity of ten years. The table reports robust standard errors in parenthesis. One star indicates
significance at the 10 percent level, two starts indicate significance at the 5 percent level, and three stars
indicate significance at the 1 percent level.

with ψπ closely resembling the values observed in the 2020-2022 subsample. We believe
that these observations—the small slope and its variation over time—can be attributed to
the presence of the zero lower bound constraint on nominal interest rates. As we will
discuss in Section 3.3, the presence of a binding zero lower bound biases the coefficient ψπ

in equation (5) downward, particularly when expectations of the constraint binding in the
future are high. Moreover, Mertens and Williams (2021) show that the zero lower bound
was a significant determinant of U.S. short-term nominal interest rate forecasts over the
2012-2014 period. This suggests that focusing on a short-term forward horizon may not be
ideal for estimating shifts in the policy rule.

Importantly, our key result holds when using [3-5] years and [6-10] years forward ex-
pectations, which are likely unaffected by the presence of the zero lower bound constraint
(Mertens and Williams, 2021). In column (3), we see that ψπ fluctuates minimally around
a value of 2 up to 2020 before dropping to 1.07 in the 2020-2022 sub-period. Column (4)
shows a similar pattern when using expectations of future interest rates and future infla-
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tion 6 to 10 years ahead, though the decline in ψπ is smaller compared to that observed for
the 3-5 year horizon

To summarize, the 2020-2022 period exhibited a sharp decline in the sensitivity of nom-
inal interest rates to inflation, as estimated using bond market data. This decline is evident
not only in shorter-term expectations but also in medium-term and, to a lesser extent,
longer-term expectations—a pattern that distinguishes the behavior of these variables dur-
ing the 2020-2022 sample relative to the preceding twenty years. Viewed through the lens
of the Taylor rule in equation (5), this suggests that bond market investors believed the
Federal Reserve would respond more weakly to shocks affecting current inflation going
forward.

Because the estimated coefficients in the pre-2020 period are close to each other for the
forecast horizon that is mostly relevant for our analysis, we will consider from now on only
two sub-samples—pre and post-2020 —and estimate the relation

∆Et

[
it,k − ρi

k − 1
k

it,k−1

]
= c + ψπ∆Et [(1 − ρi)πt,k] + d (Dt × ∆Et [(1 − ρi)πt,k]) + et, (9)

where Dt is a dummy equal to 1 if t is after 2020:M8 and zero otherwise. The coefficient
d captures the difference in ψπ across the two sub-periods, such that a negative estimate
of d indicates a weaker relationship between nominal interest rates and inflation in the
post-2020 period.

Figure 3 reports the point estimate of d in equation (9) along with a 99% confidence
interval for the baseline specification ([0-10] years forward), and for two specifications that
use medium-term ([0-5] years forward) and longer-term ([6-10] years forward) expectations.
Consistent with the results in Table 1, the point estimate of d in the baseline is -0.54 with a
tight confidence interval. The figure also shows that the largest deviations occur for short-
to medium-term expectations (up to year five) while financial markets did not expect these
deviations to persist in the longer term. For expectations between year six and ten, the
coefficient d is closer to zero, with a point estimate of -0.30, and not significantly different
from it at 1% significance level.

2.3 Discussion

So far, we have documented two main results. First, there has been a substantial change
in the relationship between nominal bond yields and inflation compensation, with their
correlation becoming substantially weaker in the post 2020 period. Second, the weakening
is especially large when looking at shorter maturities.
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Figure 3: Medium-term vs. long-term expectations
Notes: The figure reports point estimates and 99% confidence intervals for the coefficient d in equation
(9) estimated using: i) expectations of nominal interest rates and inflation averaged over the next ten year;
ii) expectations of nominal interest rates and inflation averaged over the next five year; iii) expectations of
nominal interest rates and inflation averaged between the next six and ten years. Confidence intervals are
constructed based on standard errors that are robust to heteroscedasticity and autocorrelation.

When interpreted through the lens of the Taylor rule in equation (5), these findings sug-
gest a temporary shift to a more "Dovish" policy toward inflation. We believe that this
interpretation is broadly consistent with the messages conveyed in the Federal Reserve’s
Statement on Longer-Run Goals and Monetary Policy Strategy in August 2020 (which fol-
lowed the review of the monetary policy framework, sometimes just referred to as the
"strategy review") and in the subsequent Federal Open Market Committee (FOMC) state-
ments.8 The Statement on Longer-Run Goals and Monetary Policy strategy declared that:

"[...] the Committee seeks to achieve inflation that averages 2 percent over time, and
therefore judges that, following periods when inflation has been running persistently be-
low 2 percent, appropriate monetary policy will likely aim to achieve inflation moderately
above 2 percent for some time."

The FOMC statements following the meetings between September 2020 and December
2021 struck a similar tone, stating that

"[...] the Committee will aim to achieve inflation moderately above 2 percent for some
time so that inflation averages 2 percent over time and longer-term inflation expectations

8The Statement on Longer-Run Goals and Monetary Policy Strategy is available on the Board’s website at
https://www.federalreserve.gov/monetarypolicy/files/fomc_longerrungoals.pdf.
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remain well anchored at 2 percent."

This language was new, as the FOMC had previously communicated a symmetric flexible
inflation target, rather than the new flexible average inflation target.

The reasoning behind this change was that in a low-inflation environment, with frequent
spells of interest rates at the effective lower bound (ELB), it is optimal to allow inflation to
run above the target after a recovery to avoid a downward spiral in inflation when the
response of nominal interest rate is constrained.9 Vice-chairman Clarida, in a speech in
August 2020, declared:

"[...] in a world of low r∗ in which adverse aggregate demand shocks are expected
to drive the economy in at least some downturns to the ELB. In this case, which is
obviously relevant today, economic analysis indicates that flexible inflation-targeting
monetary policy cannot be relied on to deliver inflation expectations that are anchored at
the target, but instead will tend to deliver inflation expectations that, in each business
cycle, become anchored at a level below the target."

When inflationary pressures began to build in early 2021, the FOMC acknowledged the
rise in inflation but initially assessed these pressures as transitory. The FOMC statements
between April 2021 and December 2021 stated that

"Inflation has risen, largely reflecting transitory factors."

Per the new strategy, the aim was to let inflation run moderately above two percent for
some time and have inflation fall back only as the transitory factors faded.

The new strategy thus suggests that the FOMC intended to tolerate above-target inflation
for a while, with a delayed return of inflation to the target. This could be interpreted as a
temporarily lower coefficient on inflation deviations from the target in the standard Taylor-
type policy rule. Davig and Foerster (2023) indeed show that communicating such a delay
in the return of inflation to the target can be represented as a decrease in the inflation
coefficient in the canonical Taylor rule.

Our results in the previous section suggest that bond market investors appear to have
understood and priced in the new policy strategy, as we find that the market pricing of
inflation and interest rate expectations are consistent with a weaker central bank response
to inflation. We also find that this effect is predominant at medium-term forward horizons,
whereas it is mostly absent over long-run forward horizons. This is consistent with the
Fed’s messaging about a temporary inflation overshoot ("for some time").

9See for example Eggertsson and Woodford (2003), Eggertsson (2006), and Werning (2012).
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This discussion does not imply that a change in the policy framework is necessary for
financial markets to update their view on monetary policy. Indeed, many other central
banks in advanced economies did not promptly respond to the increase in inflation ob-
served post covid, and financial markets may have changed their view about their reaction
function even in the absence of an official change in their monetary policy strategy. Bo-
cola (2024) for example documents a much smaller sensitivity of nominal bond yields to
inflation compensation in the euro area post 2020.10

3 Sensitivity analysis

In the previous section, we have documented a weakening in the correlation between nom-
inal bond yields and inflation compensation post-2020, especially when considering resid-
ual maturities up to 5 years. We have also argued that these facts are indicative of a shift
in financial markets’ perception of the Fed reaction function—specifically a more Dovish
policy toward inflation over the medium term—and pointed out that this interpretation
is consistent with the Fed’s discussion and implementation of flexible average inflation
targeting.

In this section, we put this interpretation under scrutiny. Specifically, we discuss three
plausible confounding factors that could explain the same facts documented in Section 2
even in the absence of a shift in the monetary policy regime: the presence of the output
gap in the Taylor rule (5), time-varying risk premia, and the possibility of an occasionally
binding zero lower bound constraint. We propose ways to control for these confounding
factors and show that our main results survive this sensitivity analysis.

3.1 Controlling for the output gap

Our analysis thus far was based on a Taylor rule that responded only to inflation. In
practice, the Federal Reserve has a dual mandate to achieve price stability and maximum
employment, and it is customary in the literature to include in the Fed’s reaction function
also indicators of economic activity—such as the output gap or the unemployment rate.
An important question is how a misspecification of the Fed reaction function would affect
our results and whether we can correct for such a misspecification.

10The interpretation given is that rising debts post-Covid made public finance sustainability a more press-
ing consideration for the European Central Bank, constraining its ability to raise nominal interest rates ag-
gressively.

16



To study this question, we assume that the Fed follows the rule

it = ρiit−1 + (1 − ρi)
[
i⋆t + ψπ (πt − π⋆) + ψyŷt

]
+ εm,t, (10)

where ŷt is the output gap, and ψy is an indicator of how sensitive nominal interest rates are
to changes in ŷt. Applying the same steps discussed in Section 2.2, we obtain the relation

∆Et

[
it,k − ρi

k − 1
k

it,k−1

]
= ψπ∆Et [(1 − ρi)πt,k] + ψy∆Et

[
(1 − ρi)ŷt,k

]
. (11)

If we were to estimate equation (11) using only data on expected nominal interest rates
and inflation—as we did in the previous section—the probability limit of the OLS estimator
of ψπ would be

ψ̂OLS
π

p→ ψπ + ψy

Cov
(

∆Et[πt,k], ∆Et

[
ŷt,k

])
Var (∆Et[πt,k])

. (12)

As long as expected inflation and the expected output gap are correlated, and the Fed
moves nominal interest rates partly to stabilize the output gap (ψy > 0)—both of which
are empirically plausible—the OLS estimator of ψπ will be asymptotically biased.

This bias term may also vary over time due to structural changes affecting the covariance
between inflation and the output gap. These structural changes could then explain the drop
in ψ̂OLS

π in the 2020-2022 period that we documented in the previous section. Specifically,
the bias term should be smaller in sub-samples during which supply shocks are prevalent
because these shocks induce a negative comovement between output and inflation. So,
rather than indicating a change in the Fed reaction function, the fall in ψ̂OLS

π could just
reflect the expectation that the Fed would be facing more supply-side shocks going forward
than they did in the past. This is also a plausible alternative explanation of our findings,
given the well-documented disruptions in supply chains induced by the pandemic and the
energy shocks associated with the war in Ukraine.

In what follows, we propose a strategy to address this identification problem and test
for a shift in the perceived monetary stance of the Federal Reserve after 2020. Rather than
trying to estimate the coefficient ψπ across the two sub-samples—which is not feasible
given the identification problem just described—we will use the estimates of d in equation
(9) to test the null hypothesis of no change in the monetary policy rule. Specifically, we propose
to estimate equation (9) only using forecasts revisions around the "monetary events" that
took place in our sample (e.g. FOMC meetings), which are broadly interpreted in the
literature as monetary shocks. We will then test the hypothesis that d = 0 and interpret a
rejection of this hypothesis as evidence of a change in the perceived monetary policy rule.
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The key idea of this approach is that, by conditioning on monetary events, we can control
for possible confounding effects—such as an increase in the size of supply shocks—that
may explain a fall over time in ψ̂OLS

π via the bias term.

To understand why this procedure can detect a shift in the monetary policy rule even
in the presence of these confounding factors, suppose that there was no change in the Fed
reaction function between the two sub-samples. Assume further that no other change took
place in 2020 that could have affected the propagation of a monetary shock to the rest of
the economy. Then, the joint distribution of (it,k, πt,k, ŷt,k) conditional on a monetary shock
would be independent of Dt—which would imply that the bias term in equation (12) is
constant over the two sub-samples. Under these assumptions, the OLS estimator of d in
equation (9)—the difference between ψπ in the two sub-samples—would follow a normal
distribution centered around zero asymptotically (see Appendix A). Therefore, we can test
the null hypothesis that d equaled zero and interpret a rejection as evidence of a shift in
the monetary policy rule across the two sub-samples.

Column (2) of Table 2 reports the estimates of d in equation (9) when using forecast
revisions around monetary events. These are defined as days during which the Federal
Reserve releases the statement or minutes of a planned FOMC meeting, or when the Fed
chairman delivers a speech on monetary policy at a planned event. Over the 2000-2022
sample, we have 455 such events. Consistent with our previous analysis, we continue
to observe a significant weakening in the relationship between expected future nominal
interest rates and expected future inflation after August 2020, with this effect being most
pronounced at the five year forecast horizon. Since we are conditioning on the same type
of shock—a monetary shock—both before and after 2020, we are more confident that these
results reflect a shift in the perceived monetary policy rule rather than a change in the
nature of shocks the U.S. economy faced post-2020.11

Discussion. It is useful to think about the procedure just described through the lens of the
canonical New Keynesian model. Suppose that our data were generated by the standard
log-linearized three-equations New Keynesian model, which we outline in Appendix B, and
consider estimating equation (11) only using expectations of future nominal interest rates
and future inflation conditional on monetary shocks. The following result characterizes the
probability limit of ψ̂OLS,m

π as a function of the model’s structural parameters.

11Our approach would not be valid if market surprises around monetary policy events reflect information
about the current state of the economy that markets learn from policy officials—a so called "Fed information
effect", see Nakamura and Steinsson (2018). In Appendix C.2 we use the insights of Jarociński and Karadi
(2020) to refine our sample by excluding monetary events likely associated with these information spillovers.
Our main results remain robust to this additional sensitivity check.
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Table 2: Sensitivity analysis

(1) (2) (3) (4)
Baseline Monetary events Risk premia ZLB

d (10 year avg) −0.54⋆⋆⋆ −0.88⋆⋆ −0.27 −0.35∗

(0.11) (0.43) (0.19) (0.20)

d (5 year avg, 1-5 ) −1.05⋆⋆⋆ −1.94⋆⋆⋆ −1.05⋆⋆⋆ −1.25⋆⋆⋆

(0.15) (0.50) (0.12) (0.27)

d (5 year avg, 6-10 ) −0.13 −0.26 0.16⋆⋆⋆ 0.19
(0.10) (0.30) (0.04) (0.14)

N. obs. 4019 455 4019 4019

Note: The table reports the estimates of d in equation (9) under different specifications. Column (1) restates
the baseline results reported in Section 2. Column (2) estimates equation (9) using only daily changes in
nominal bond yields and inflation compensation around monetary events. Column (3) controls for time-
variation in term and inflation risk premiums. Column (4) controls for proximity to the zero lower bound.
Standard errors are robust to heteroscedasticity and autocorrelation. One star indicates significance at the
10 percent level, two starts indicate significance at the 5 percent level, and three stars indicate significance
at the 1 percent level.

Proposition 1. Consider the log-linearized three-equations New Keynesian model. Let ρy ∈ (0, 1)
be the solution to

ρy = ρi − (1 − ρi)
1
σ

ρy

(
ψπ

κ
1−βρy

+ ψy

)
(

1 − ρy − 1
σ

κ
1−βρy

ρy

) (13)

where κ is the slope of the Phillips curve, β is the rate of time preference of the representative
household, and σ is the inverse of the elasticity of intertemporal substitution. Let Em

t [ξk] be the
forecast update for variable ξ at date k > t given that we learn of a realization of the monetary shock
at date t,

Em
t [ξk] ≡ E[ξk|I t, εm,t]− E[ξk|I t].

Consider a linear projection of Em
t
[
îk − ρi îk−1

]
on a constant and Em

t [(1 − ρi)π̂k], and denote by
ψ̂OLS,m

π the projection coefficient. Then, the probability limit of ψ̂OLS,m
π is

ψ̂OLS,m
π

p→ ψπ + ψy
(1 − βρy)

κ
. (14)

From equation (14), we can see that the estimate of ψπ is asymptotically biased even
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when we condition on monetary policy shocks. The proposition shows that this bias de-
pends on some of the structural parameters of the model: the policy parameters (ψy, ψπ, ρi),
the slope of the Phillips curve κ, the rate of time preference β and the elasticity of intertem-
poral substitution σ.

Importantly, the bias does not depend on the parameters of the other shocks hitting
the economy. So, an increase in the variance of supply shocks, which as discussed earlier
could explain the fall in ψ̂OLS

π documented in Table 1, does not affect the probability limit
of ψ̂OLS,m

π . In this sense, conditioning on monetary shocks makes it easier to detect shifts in
the monetary policy rule.

Proposition 1 also helps clarify the additional assumptions needed to interpret a change
in ψ̂OLS,m

π across the two sub-samples as evidence of a change in the monetary policy rule.
As discussed earlier, we need the bias term in equation (12) to be constant across the two
sub-samples under the null hypothesis of no change in the monetary policy rule. This requires
that other structural parameters that affect the propagation of monetary shocks are constant
over the horizon of our analysis. Looking at the expressions in (13) and (14), we need the
slope of the Phillips curve κ and the preference parameters β and σ to be constant across the
two sub-samples. Recent papers have emphasized a steepening of the Phillips curve after
2020 (Benigno and Eggertsson, 2023), something that could potentially rationalize a fall in
ψ̂OLS,m

π even in absence of an actual shift in the monetary policy rule. However, a simple
back of the envelope calculation suggests that κ would need to increase by a factor of five
to explain our findings quantitatively.12 Similarly, we would need somewhat unplausibly
large changes in σ and β to rationalize a fall in ψ̂OLS,m

π across sub-samples without an actual
change in the monetary policy rule.

Estimating features of the Fed reaction function by conditioning on a monetary shock
may appear counterintuitive at first: after all, it is the presence of monetary shocks in the
Taylor rule that creates an endogeneity problem, which has led researchers to use other
type of structural shocks as instrumental variables to estimate the parameters, see Debor-
toli, Galí, and Gambetti (2020). By looking at future outcomes, however, we can exploit the
variation induced by a monetary shock and learn something about the systematic compo-
nent of the Taylor rule.13

Finally, while under our assumption a non-zero d must come from changes in the under-
lying monetary policy rule, this test does not tell us which parameter of the policy rule is

12Plugging in standard values for the other parameters, we need κ to increase by a factor of 4.88 to lead to
a reduction in the bias term of about 0.6, which is roughly consistent with our estimates of d in Table 2.

13Conditional on a monetary shock at time t, Et[ik − ρiik−1] depends only on the systematic component of
the Taylor rule as long as k > t and the monetary shocks are not serially correlated. Therefore, it is possible
to learn the parameters of the Taylor rule by looking at the relation between Et[ik − ρiik−1] and movements
in inflation and the output gap induced by a monetary shock.
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changing. Indeed, from equation (14) we can see that the bias term depends on (ρi, ψπ, ψy),
so potentially a change in either of them can account for a non-zero d. Consistent with
the discussion in Section 2.3, in the quantitative analysis of Section 4 we will consider a
monetary policy rule that alternates between two regimes—a historical Taylor rule given
by equation (10), and an average inflation targeting regime in which the monetary author-
ity responds to deviations of average inflation from a target. Importantly, we will estimate
the parameters of the average inflation targeting regime via indirect inference by matching,
in model simulated data, the point estimates of the coefficient d at different forecasting
horizons.

3.2 Controlling for time-varying risk premia

So far, we have assumed that daily changes in nominal bond yields and in inflation com-
pensation are equivalent to forecast revisions about future nominal interest rates and future
inflation. That is, we have assumed that the term premium and the inflation risk premium
are constant over time. In what follows, we discuss to what extent the presence of time-
varying risk premia on nominal and real bonds affects our results and how we can control
for these movements.

In order to understand how risk premia affect our analysis, we can substitute equations
(3) and (4) in equation (7), obtaining

∆
[

i(k)t − ρi
k − 1

k
i(k−1)
t

]
= ψπ∆

[
(1 − ρi)IC(k)

t

]
+ εt, (15)

where εt is a function of the term premium ηt,k and inflation risk premium ιt,k,

εt = ∆
[

ηt,k − ρi
k − 1

k
ηt,k−1 − (1 − ρi)ψπ ιt,k

]
.

Similarly to what happens for the output gap, the presence of risk premia in bond mar-
kets introduces a bias in the estimates of ψπ, and time-variation in this bias can potentially
account for the reduction in the measured sensitivity of nominal interest rates to inflation
we have documented so far. In what follows, we use methods developed in the literature to
estimate daily movements in the term premium and in the inflation risk premium, and use
these estimates to back out from bond market data actual expectations of future nominal
interest rates and inflation. We will then estimate equation (9) using these measures of
expectations that are "purified" from risk premia.

In order to compute daily inflation expectations measures, we first obtain from the Sur-
vey of Professional Forecasters (SPF) the average expected inflation rate over the next five
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and ten years at a quarterly frequency and interpret it to be a measure of the actual expec-
tation of average inflation over that horizon, Et[πt,k].

Most asset pricing models imply that the inflation risk premium reflects the underlying
factors that drive inflation and, therefore, also actual inflation expectations. That is, if
inflation expectations are driven by a vector of factors Xt,

Et[πt,k] = ft,k (Xt) ,

then the inflation compensation should also be a function of the same underlying factors,
IC(k)

t = gt,k (Xt).

Our approach to compute daily inflation expectations follows the insight of Aronovich
and Meldrum (2021) and consists in approximating fk,t using local linear projections of
the surveys expectation onto the observable inflation compensation measures and nominal
yields. These regressions are estimated on a seven year rolling sample in order to take
into account the time-variation of f . We can then use the estimated parameters of this
relation and our data on IC(k)

t and nominal bond yields to obtain daily measures of inflation
expectations.14 Appendix C.1 provides more details on this procedure and discusses the
properties of the inflation risk premium that we back out with this approach.

Unfortunately, the SPF does not ask similar questions for average expected nominal short
rates over the time horizon we are interested in. So, in order to back out actual expectations
about future nominal interest rates from our data, we subtract from nominal bond yields
the estimates of nominal term premia from the Kim and Wright (2005) model, which are
maintained at a daily frequency on the website of the Federal Reserve Board. We then use
the resulting data to obtain a daily measure for Et[it,k].

Column (3) in Table 2 reports the estimates of d when using the risk premia-adjusted
expectation data. We continue to find a reduction in the sensitivity of expected future nom-
inal interest rates to expected future inflation in the 1-5 years horizon, with the coefficient
being identical to the one in the baseline specification.

3.3 Controlling for the zero lower bound constraint

The presence of the zero lower bound (ZLB) constraint implies, by construction, a reduced
sensitivity of nominal interest rates to inflation changes when the former are expected to

14The survey started to ask the question about the average expected inflation rate over the next five years
only in 2005Q3. So, we estimate f starting from this date, but use the estimated coefficient and our data
on the risk-neutral expectations to backcast what the actual inflation expectations would have been between
2000 and 2005Q3 using the first available set of regression coefficients.
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be near zero in the future. So, rather than an indication of a reduction in ψπ post-2020, our
results could be due to a binding or near-binding zero lower bound in this subsample.

In Table 1, we have already shown that our results survive when excluding from the
analysis the [0-2] forward horizon—the most affected by the ZLB. In this section, we control
for this issue more explicitly by allowing for the possibility of a ZLB constraint when
specifying the monetary policy rule and by modifying our empirical strategy accordingly.
Specifically, we assume that the Taylor rule in equation (5) holds for the "shadow" interest
rate ît, while the observed interest rate is related to this shadow rate by the relation

it = max
{

ît, 0
}

.

Assuming further that εm,t is a Gaussian i.i.d. random variable with mean 0 and variance
σm, we have that the expected future short term rate at year k is given by

Et[it+k] = ρiEt[it+k−1] + (1 − ρi)
{

Et[i⋆t+k] + ψπEt[πt+k − π⋆]
}
+ f

(
Et[ît+k]

σm

)
σm, (16)

where f (x) = φ(x)/[1 − Φ(x)], with φ(.) and Φ(.) being, respectively, the probability den-
sity function and the cumulative density function of the standard normal random variable.

We use equation (16) to modify our test. Specifically, consider a first order approximation
of equation (16) around the point Et[πt+k] = π⋆, Et[i⋆t+k] = i⋆ and Et[it+k−1] = it,k−1.15 We
then have

Et [it+k] =

(
1 +

1
σm

f ′k

){
ρiEt[it+k−1] + (1 − ρi)

{
Et[i⋆t+k] + ψπEt[πt+k − π⋆]

}}
, (17)

with

f ′k = f ′
(

ρiit+k−1 + (1 − ρi)i
⋆

σm

)
.

The term in f ′k is negative and tends to be large in absolute value when the approximation
point, ρiit,k−1 + (1 − ρi)i

⋆
, is close to zero. This is intuitive: the smaller ρiik−1 + (1 − ρi)i

⋆

relative to the size of the monetary shocks, the more likely that the zero lower bound
constraint will bind in year k. From this expression, we can also see how the presence of
the ZLB affects our inference on ψπ: for a given correlation between Et[ik] and Et[πk], we

15An alternative approach would be to use equation (16) and non-linear least squares to test the stability
of ψπ over time. However, in this approach we would need to have a proxy for the neutral interest rate Et[i⋆k ].
Rather than following this route, we approximate equation (16) to a first-order and apply the same methods
employed previously to control for these two unobservables.
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will infer a larger ψπ the closer we expect to be to the ZLB.16

Importantly, f ′k is known up to it,k−1, i⋆ and σm. Our approach consists of two steps.
First, we use data to calibrate these three parameters in order to obtain numerical values
for { f ′k} for each k. Specifically, we use the sample average of the Laubach and Williams
(2016) indicator of the natural interest rate, add 2% inflation to obtain a value for i⋆, and
use the sample average of Et[it+k−1] to set it,k−1. Importantly, we let the values of it,k−1

and i⋆ vary across the two sub-samples, so as to allow for expectations of a binding ZLB to
differ in the pre and post-pandemic periods. To be conservative, we set σm = 0.03 which is
twice as large as the typical estimate of the standard deviation of monetary policy shocks.17

We use these values to compute { f ′k} for both sub-samples and use these coefficients along
with equation (17) to obtain an expression for the revision in expectations about the average
of the short term rate over the next k years

∆Et[it,k]−
1
k

k

∑
j=1

(
1 +

1
σm

f ′j

)
ρi∆Et[it+j−1] = ψπ

1
k

k

∑
j=1

(
1 +

1
σm

f ′j

)
(1 − ρi)∆Et[πt+j].

This expression is the equivalent of equation (7) in the presence of the ZLB constraint, and
we can use it to test for the stability of ψπ in the sample.

Column (4) of Table 2 reports the estimates of d for this specification. We can see that
the results are robust to controlling for the presence of the ZLB constraint, as we find
significant differences in ψπ across the two sub-samples, especially when we consider short
to medium-term expectations.

3.4 Additional sensitivity

We conducted additional sensitivity analyses, which are presented in Appendix C.2 to keep
the main paper concise.

In the benchmark specification, we fix the persistence parameter of the Taylor rule ρi

to 0.80 at an annual frequency. In the sensitivity analysis, we estimate equation (9) under
different values of ρi, varying it between 0.7 and 0.9. We find that the estimated coefficient
d is only marginally affected by these changes.

In a different exercise, we obtain risk-neutral expectations about future nominal interest
rates and future inflation using overnight index swaps (OIS) and inflation-linked contracts
(ILC), rather than nominal and real bond yields. This exercise is valuable because these

16To see this point, consider the special case in which ρi = 0 and Et[i⋆t+k] = 0. Then, a consistent estimator
of ψπ would be ψOLS

π /(1 + 1
σ f ′k). Holding ψOLS

π constant, the smaller is f ′k the larger the inferred ψπ .
17This is conservative because a higher value of σm will tend to magnify differences between f ′k across

regimes.
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measures are thought to be less contaminated by the presence of liquidity premia and
convenience yields relative to those that we are currently using in the analysis. As shown
in the Appendix, we obtain very similar estimates for the coefficient d when estimating
equation (9) using this data.18

4 Quantitative analysis

In the previous section we have presented evidence consistent with a perceived shift to-
ward a more Dovish monetary policy stance during the pandemic. In this section, we use a
standard New Keynesian model to quantify the macroeconomic implications of this shift.
Section 4.1 presents the model, while section 4.2 discusses the estimation of its parameters.
Section 4.3 uses the estimated model to measure the drivers of inflation during the recovery
phase after the pandemic. By applying the particle filter, we show that the model explains
the observed rise in inflation via a combination of negative supply shocks, increasing de-
mand, and a switch toward the Dovish policy regime. We find that this shift in monetary
policy accounts for roughly half of the observed increase in inflation.

Note that in the model, we take the view that the perceived change in policy was caused
by a shift in the actual policy rule. However, one could model this as only a change in
perceived policy while keeping actual policy unchanged. We show that our results are
mostly driven by expectations of future monetary policy rather than a differing path for
realized interest rates.

4.1 The model

Time is discrete and indexed by t = 0, 1, ... The economy is populated by a continuum
of identical and infinitely lived households, final good producers, intermediate good pro-
ducers, and a monetary authority. Let st be the exogenous state of the economy. Let
st = (s0, ..., st) be the history of events up through and including period t, and p

(
st | st−k)

be the probability of a history st given st−k.

Preferences and technology. Households have preferences over consumption, c
(
st) , and

hours worked, l
(
st) given by

∞

∑
t=0

βt
∫

st
θ̃
(
st)U

(
C
(
st) , L

(
st)) p

(
st | s0

)
dst, (18)

18We do not use swaps in the baseline analysis because of a data limitation issue, as reliable data on those
contracts are available only for a subset of the 2000-2022 period and for fewer maturities.

25



where U(C, L) has standard properties, β is the discount factor and θ̃
(
st) is a preference

shock, our “demand shock”.19

The final good is produced by combining differentiated intermediate goods according
to the CES technology

Y
(
st) = (∫ 1

0
yi
(
st) 1

µ(st) di
)µ(st)

(19)

where µ
(
st) > 1 is related to the constant elasticity of substitution across varieties, ϵ(st),

by the following relation: µ(st) = ϵ(st)/[ϵ(st)− 1]. Time-variation in µ(st) will generate
shifts in the Phillips curve. So, we will equivalently refer to µ(st) as the “supply shock".

The intermediate goods are produced using a linear technology,

yi
(
st) = ni

(
st) (20)

where ni
(
st) denotes the labor utilized in the production of good i. Feasibility requires

that
∫

ni(st)di = L(st).

Households. The stand-in household chooses consumption, leisure, and bond holdings
to maximize (18) subject to their budget constraints

P
(
st)C

(
st)+ B

(
st+1

)
≤ W

(
st) L

(
st)+ (1 + i

(
st)) B

(
st)+ Π

(
st)

where P
(
st) is the price level, W

(
st) is the nominal wage rate, i

(
st) is the nominal interest

rate, and Π
(
st) denotes profits from the monopolistically competitive firms owned by

stand-in household.

Final good producers. The final good is produced by competitive firms who choose in-
puts yi

(
st) to maximize

P
(
st)Y

(
st)− ∫ 1

0
Pi
(
st) yi

(
st) di

where Y
(
st) is given by (19) and Pi

(
st) the price of intermediate good i. Using this prob-

lem, we can derive the demand function for variety i

yi
(
st) = (Pi

(
st)

P (st)

) µ(st)
1−µ(st)

Y
(
st) (21)

19As showed in Berger, Bocola, and Dovis (2023) for example, fiscal transfers to the high marginal propen-
sity to consume households—as those observed in the US during the pandemic—are isomorphic to a discount
factor shock in the baseline three-equations New Keynesian model.
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and the price index is given by

P
(
st) = (∫ 1

0
Pi
(
st) 1

1−µ(st)

)1−µ(st)
.

Intermediate good producers. Each intermediate good is supplied by a monopolistically
competitive firm that uses labor to operate the linear technology (20). The firm faces
quadratic adjustment costs when changing their prices relative to the inflation target of
the monetary authority π⋆,

ϕ

2

[
Pi
(
st)

Pi (st−1) (1 + π⋆)
− 1

]2

.

Intermediate goods firms are owned by the stand-in household and discount profits using
their stochastic discount factor. The problem of each intermediate goods firm is

max
{Pi(st),yi(st),ni(st)}

∞

∑
t=0

∫
st

Q
(
st) Pi

(
st) yi

(
st)− W

(
st) ni

(
st)− ϕ

2

[
Pi
(
st)

Pi (st−1) (1 + π)
− 1

]2
 dst (22)

subject to (20) and (21) and where the nominal stochastic discount factor is

Q
(
st) = βt θ̃(st)

θ̃(s0)

Uc
(
st) /P(st)

Uc (s0) /P(s0)
p
(
st|s0

)
.

Monetary policy. The monetary authority follows a Taylor rule with Markov switching
regimes. There are two possible regimes ξ ∈ {H, D}. We think of regime H(awk) as a
regime in which the monetary authority targets current inflation, while D(ove) is a regime
in which the monetary authority targets a backward-looking average of inflation over a
certain horizon. In particular, we have

1 + i
(
st) = (1 + i

(
st−1

))ρi ×
{ (

1 + i
) [1 + 1(ξt = H)π

(
st)+ 1(ξt = D)πt

(
st)

1 + π⋆

]ψπ(ξt)

(
Y
(
st)

y

)ψy }1−ρi

× exp {σmεm (st)} (23)

where i is the steady-state interest rate, π⋆ is the inflation target, y is the (constant) output
under flexible prices, πt

(
st) = ∑N

j=0 πt−j
(
st−j) is average inflation over the previous N

periods and εm (st) is the monetary policy shock.

There are two differences between the regimes. First, in the H regime, the monetary
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authority aims to bring inflation at its target level π⋆ on a period-by-period basis, while in
the D regime, that is true on average. This is a parsimonious way of capturing the adoption
of the flexible average inflation targeting adopted after the Federal Reserve strategy review
in 2020.20 Second, we allow the responsiveness of nominal rates to inflation—ψπ(ξt)—to
vary across the two regimes.

Equilibrium. Given lagged prices and nominal interest rate, an equilibrium is a set of
household’s allocations

{
C
(
st) , L

(
st) , B

(
st)}, prices

{
P
(
st) , W

(
st) , i

(
st)} such that i)

the households’ allocation solves the stand-in household’s problem, ii) the price for the
final good solves (22) with P

(
st) = Pi

(
st), iii) the nominal interest rate satisfies the Taylor

rule (23), iv) markets clear in that

L
(
st) = Y

(
st) = C

(
st)+ ϕ

2

(
π
(
st)− π⋆

1 + π⋆

)2

(24)

and B
(
st) = 0 as nominal bonds are in zero-net supply.

As is standard, the behavior of households and firms can be summarized by an Euler
equation

1 =
[
1 + it

(
st)] β

∫ [
θ
(

st+1
) Uc(st+1)/Uc(st)

1 + πt+1 (st+1)

]
p
(

st+1|st
)

dst+1 (25)

where θ
(
st+1) = θ̃

(
st+1) /θ̃

(
st), and a New Keynesian Phillips curve

π̃
(
st) = Y

(
st) [µ (st)w

(
st)− 1

]
ϕ [µ (st)− 1]

+ β
∫ [

θ
(

st+1
) Uc(st+1)/Uc(st)

1 + πt+1 (st+1)

]
π̃
(

st+1
)

p
(

st+1|st
)

dst+1 (26)

where

π̃
(
st) = (π

(
st)− π⋆

1 + π⋆

)(
1 + π

(
st)

1 + π⋆

)
and w

(
st) = −UL

(
st) /Uc

(
st) is the real wage. Thus, the equilibrium can be characterized

by a sequence
{

Ct
(
st) , L

(
st) , Y

(
st) , π

(
st) , i

(
st)} that satisfies (23), (24), (25), and (26)

given the stochastic processes for the shocks in the economy.

20The discussion in Section 2.3 clarified that flexible average inflation targeting prescribes a limited re-
sponse when current inflation is above target following periods during which inflation has been consistently
below targets due to a binding zero lower bound constraint. In our formulation, this behavior would be ap-
proximated by a shift to the D regime in conjunction with an initial condition of π̄(st) < π⋆—as that would
generate persistently low nominal interest rates even if inflation is currently above target.
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4.2 Estimation

We now discuss the estimation of the model. We assume the following utility function

U (C, L) =
C1−σ

1 − σ
− χ

L1+ 1
ν

1 + 1
ν

.

The exogenous state variables are st = (ξt, εm,t, µt, θt). We assume that the policy regime
ξt follows a two-state Markov chain with transition matrix P with representative element Pij

for row i column j. We assume that the demand and the supply shocks follow independent
AR(1) processes. That is, letting θ̂t = log(θt) and µ̂t = log(µt),

θ̂t = ρθ θ̂t−1 + σθεθ,t

µ̂t =
(
1 − ρµ

)
log(µ) + ρµµ̂t−1 + σµεµ,t

where εθ and εµ are standard normal random variables.

The structural parameters are those governing preferences and technology, [σ, β, ν, χ, ϕ, µ],
those governing policy, [π⋆, ρi, ψy, ψπ(H), ψπ(D), N] and those governing the evolution of
the shocks, [P, σµ, ρθ, σθ, ρµ, σµ]. We fix a subset of these parameters at conventional values.
In particular, we assume that σ = ν = 1, we set the average markup µ = 1.2 and normal-
ize the preference parameter χ to 1/1.2 so that consumption and output are equal to 1 in
the deterministic steady state. We set the inflation target to 2% annually, π⋆ = .005, and
β = .995. so that the model roughly matches the average inflation and nominal interest
rates in our sample. We fix the probability of transitioning from H to D to 0.006, which
gives us an expected duration of the H regime of roughly 40 years, interpreting it as the
monetary policy regime post-Volcker. Finally, we fix N = 12, implying that a period of
three years for the averaging of inflation in the D regime, see Hebden, Herbst, Tang, Topa,
and Winkler (2020).

For the other parameters, we proceed in two steps. While a detailed description of the
estimation is provided in Appendix E.1, we summarize the key aspects of our approach
and discuss the results here. First, we assume that for the 1984:Q1-2019:Q4 time period, the
policy-maker was of a single type ξ = H and we estimate the shock processes as well as the
parameters

[
ϕ, ρi, ψπ (H) , ψy

]
on this sub-sample. The observables are the de-trended log-

arithm of employment, nominal interest rate, and the CPI inflation.21 We approximate the
model’s policy functions using a first-order perturbation around the deterministic steady

21All these series are available at FRED, see Appendix D for a complete description. In our model, there
is an equivalence between output and worked hours. We use employment data in the analysis rather than
direct measures of output because the former have proved to be more predictive of inflation in recent years.
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Table 3: Model parameters

Panel A: Fixed parameters
Value Notes

σ 1.000 Intertemporal elasticity of substitution of 1
ν 1.000 Frish elasticity of 1
χ 0.833 Normalize output to 1 in steady state
µ 1.200 20% markup in steady state
π⋆ 0.005 Inflation target of 2%
β 0.995 Annualized real interest rate of 2% in steady state
N 12.000 3 year horizon when averaging inflation in the D regime
PHH 0.994 40 years expected duration of H regime

Panel B: Estimation of single regime model
Parameter Posterior mean 90% interval Prior distribution Prior mean Prior st. dev.
ϕ 58.35 [39.94,75.97] Gamma 80.00 10.00
ψπ(H) 2.52 [2.09,2.95] Normal 1.50 0.50
ψy 0.29 [0.18,0.39] Normal 1.50 0.50
ρi 0.90 [0.87,0.92] Beta 0.50 0.29
ρµ 0.83 [0.73,0.93] Beta 0.50 0.29
ρθ 0.94 [0.92,0.97] Beta 0.50 0.29
σµ × 100 2.67 [1.85,3.48] InvGamma 1.00 Inf
σθ × 100 0.17 [0.14,0.20] InvGamma 1.00 Inf
σm × 100 0.18 [0.15,0.20] InvGamma 1.00 Inf

Panel C: Parameters of Dovish rule
Value Notes

ψπ(D) 0.66 Point estimates of d, 1-5 yrs. Data: -1.00, Model: -1.00
PDD 0.83 Point estimates of d, 6-10 yrs. Data: 0.00, Model: -0.03

Note: The Table reports the numerical value of the parameters that we use for the counterfactual exercise. A
subset of parameters, reported in Panel A, are fixed to conventional values from the literature. The remaining
parameters are estimated using a two-step procedure detailed in Appendix E.1. Panel B reports the posterior
distribution of the parameters estimated in the first step by fitting the single regime model to historical data
on employment, inflation and nominal interest rates. Panel C reports the value of the parameters obtained in
the second step.

state of the single regime model and estimate the structural parameters with Bayesian meth-
ods. We use the single regime model in this step because it is easier to solve and estimate
and still offers an accurate approximation of the policy functions of the model conditional
on the H regime.22 The resulting estimates are broadly consistent with previous studies,

22This is the case in our application because—at any given point in time—the likelihood of transitioning

30



see panel B of Table 3.

In the second step, we estimate the remaining parameters of the Dovish regime—ψπ(D)

and PDD—to match the high frequency evidence presented in the previous sections. We
choose as empirical targets d in equation (9) estimated using only monetary events: as
argued earlier, these statistics are more indicative of an actual change in monetary policy
in the presence of Taylor rules that feature an output gap component, like the one in
the model. Specifically, we target a value of d equal to −1 for expectations over the 1-5
years horizon, and a value of d equal to 0 for the 6-10 years horizon. These numbers are
conservative given the estimates in column (2) of Table 2. See Appendix E for a description
of how we compute these objects in the model.

Panel C of Table 3 reports the numerical value of the parameters and an indicator of
model fit. The model can replicate the large deviations observed in the sensitivity of ex-
pected future nominal interest rates to expected future inflation across the two regimes,
with this gap narrowing at longer horizons. To achieve that, the model needs a much
smaller value of ψπ in the D regime, 0.66 vs 2.49, and a conditional probability of remain-
ing in the D regime of 83%.

4.3 Monetary policy and the rise in inflation

We now combine our model with data to assess the role of monetary policy in the run up
of inflation observed during the recovery from the pandemic. We proceed in two steps.
In the first step, we apply the particle filter to our model and we estimate the path of
the structural shocks—θ̂t, µ̂t and εm,t—as well as the monetary regime in place during the
2020:Q4-2022:Q1 period. In the second step, we use the model to construct counterfactual
trajectories for inflation, the output gap and nominal interest rates under the H monetary
regime: any difference between the actual and the counterfactual trajectories isolates the
effect of the shift in the monetary policy rule on the outcome of interest. See Appendix E.2
for a description of these two steps.

The top panels of Figure 4 report the data for the period of analysis. We can observe a
sharp increase in output and the large inflation spikes that characterized the recovery from
the pandemic in the US, while nominal interest rate were kept persistently at zero through-
out this period. The bottom panels of the figure report the (average) of the trajectories of
the shocks that rationalize the data.

To reproduce the observed patterns in output, inflation, and nominal interest rates, the
model requires a gradual recovery in household demand—represented by a declining path

from the H to D regime is very close to zero.
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Figure 4: Event study, 2020:Q3-2022:Q1
Notes: The solid lines report the data used in the experiment. The circled lines report the posterior mean
of the filtered series for the model counterpart and for the associated realization of the shocks generating
that trajectory. Inflation and nominal interest rates are reported in (annualized) percentage points, and
output is reported in percentage point deviations from its trend. The structural shocks are reported in
percentage points deviations from their steady-state value. The bottom-right panel reports the probability
of being in the H regime.

of β̂ returning to its steady-state level—and an unusually large negative supply shock
through the first half of 2021, as evidenced by the trajectory of the markup shocks. The
former contributes to the strong recovery observed during the event, while the latter is
needed to fit the increase in inflation observed during this period.

In addition, and consistent with our empirical analysis, we find evidence of a switch to
the D regime. By 2021:Q2, the historical Taylor rule would have predicted substantially
higher interest rates than observed, given that inflation was at 7% and output had nearly
returned to its trend. Thus, the model infers a switch to the average inflation targeting
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Figure 5: Output, inflation and nominal interest rate under the H regime
Notes: The circled lines report output, nominal interest rates and inflation during the event. Nominal
interest rates and inflation are reported in percentage points, and output in percentage points deviations
from their trend. The solid line reports the posterior men of the same variable in the counterfactual econ-
omy in which the monetary authority did not change to average inflation targeting—ξt = H throughout
the event.

regime, which, under our parametrization, results in a more inertial path for nominal in-
terest rates, keeping them closer to zero. Interestingly, the model does not need unusually
large monetary shocks to fit the data, as the realization of εm,t in most periods falls within
one standard deviation from its mean. This indicates that the Taylor rule that we have
specified is not only consistent with the empirical evidence on expectations we have doc-
umented in Section 2 and 3, but it also fits realized data on output, inflation and nominal
interest rates in our episode as well as the traditional Taylor rule fits historical realizations
of these variables.

With the realized shock processes in hand, we can now use the model to perform a
counterfactual analysis. Specifically, we input the estimated values of {θ̂t, µ̂t, εm,t} into the
model, but compute the path of the endogenous variables under a counterfactual scenario
where ξt = H in all periods during this episode. This experiment, therefore, estimates how
the economy would have evolved if there had been no shift in the Fed’s policy rule.

The solid lines in Figure 5 report the path for output, inflation, and nominal interest rates
in the counterfactual. In contrast with the realized observations, the nominal interest rate
would have been above zero and would have increased steadily throughout the episode
under the H regime. The model tells us that the impact of this policy change on output
and inflation would have been sizable: by the end of 2021, output would have been approx-
imately three percentage points and inflation four percentage points below their observed
value.

In order to understand why inflation is so sensitive to changes in the monetary regime,
we can iterate forward the linearized Phillips curve (26) and the Euler equation (25) to
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obtain

ŷt = − 1
σ

∞

∑
j=0

Et[r̂t+j]−
1
σ

∞

∑
j=0

Et[θ̂t+1+j], (27)

π̂t = κ
∞

∑
j=0

βjEt[ŷt+j] + κ
∞

∑
j=0

βjEt[µ̂t+j] (28)

where r̂t+j = ît+j − Et+j[π̂t+j+1] is the real interest rate at time t + j. Substituting equation
(27) in (28), and using the fact that the path of the structural shocks is held constant in our
counterfactual, we can then write the difference between the inflation rate under the D and
the H regime as

π̂D
t − π̂H

t = − κ

σ

{ (
r̂D

t − r̂H
t

)
+ (1 + β) [Et(r̂t+1|ξt = D)− Et(r̂t+1|ξt = H)]

+ (1 + β + β2) [Et(r̂t+2|ξt = D)− Et(r̂t+2|ξt = H)] + . . .
}

, (29)

where Et[.|ξt = x] is the conditional expectation at time t given that ξt = x.

Equation (29) clarifies that the switch to the H regime in the counterfactual affects infla-
tion at time t by changing the entire term structure of real interest rates. Since the slope
of the Phillips curve is fairly flat in our parametrization (κ = 0.10), changes in current
real interest rates have minimal impact on inflation at date t. However, the policy shift
can still have sizable effects on current inflation because its sensitivity to expected future
interest rates increases over the forward horizon, converging to κ

σ(1−β)
for very long-term

real interest rates. This occurs because changes in expected future interest rates influence
agents’ expectations about future output gaps via equation (27), which, in turn, affect firms’
current pricing decisions through the Phillips curve (28).

The circled line in Figure 6 plots the model implied term structure of real interest rate
expectations averaged over the event. We can see that in the counterfactual scenario, real
interest rate expectations over a two-year horizon are higher relative to those predicted
by the model during the event. This is intuitive. The only difference between the two
lines lies in the conduct of monetary policy, which in the event is characterized by the D
regime while in the counterfactual by the H regime. Under the D regime, agents expect the
monetary authority to respond more slowly to shocks that affect inflation relative to what
they would expect under the H regime. Because the event is characterized by inflationary
shocks, expectations of a slower response translate into expectations of lower real interest
rates. These lower interest rates are expected to last for only 8 quarters due to the transitory
nature of the D regime and the markup shocks. These movements in expected future real
interest rates are not empirically implausible. Yields on TIPS with a residual maturity of
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Figure 6: The term structure of real interest rates expectations
Notes: The circled lines report Et[rt+j] as a function of the maturity j averaged over the event. The solid
line reports the same model objects in the counterfactual economy with ξt = H throughout the event.

two years increased by 1.5% shortly after the lift-off event of March 2022, in the same order
of magnitudes as those predicted by the model in Figure 6 if we interpreted the lift-off as a
switch back to the H regime.

Although the movements in real interest rates across the two regimes are empirically
plausible, their effects on output and inflation should be interpreted with caution. From
equation (29), we can see that movements in long-term real rates have large effects on infla-
tion because of their outsized effects on the output gap—often referred to in the literature
as the "forward guidance puzzle" (Del Negro et al., 2012)—and because of the forward-
looking nature of inflation in the New Keynesian model. If one believes that these features
result in excessive sensitivity to long-term interest rates, our results should be considered
an upper bound on the effects of monetary policy on inflation. Caravello, McKay, and Wolf
(2024) also document, using a semi-structural approach, that a shift in the monetary policy
rule has sizable effects on the economy when considering the classic rational expectation
New Keynesian model, and they show that introducing behavioral elements as in Gabaix
(2020) reduces the sensitivity of inflation to these changes.23 In future research, we plan to
build on this insight and conduct our analysis in an economy that exhibits a more realistic
sensitivity of inflation to current and future real interest rates.

23Other ways of reducing this sensitivity would be that of incorporating imperfect information as in An-
geletos and Lian (2018) or introducing incomplete financial markets as in McKay, Nakamura, and Steinsson
(2016).
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5 Conclusion

This paper introduces a novel method to measure shifts in the systematic conduct of mon-
etary policy using bond market data. Our method exploits the high-frequency nature of
the data to isolate market expectations about the reaction of nominal interest rates to fu-
ture movements in inflation, thereby providing a real-time assessment of financial markets’
views on the monetary stance on inflation. Applying this methodology to U.S. data, we
find that financial markets maintained remarkably stable expectations about the Federal
Reserve’s behavior over the 2000-2020 period, but significantly revised these expectations
following the adoption of the flexible average inflation targeting framework in 2020.

We have also shown how we can use these estimates to quantify the size and duration of
these shifts in the monetary policy rule and assess their macroeconomic effects. Through
the lens of the baseline New Keynesian model, we find that the shift to the flexible average
inflation targeting regime accounts for around half of the increase in inflation observed
during the sample. This result depends heavily on the details of the structural model that
we used, which we kept quite simple for illustrative purposes. We believe that assessing
the positive and normative implications of the documented shifts in the monetary policy
rule in more quantitatively relevant models is a fruitful avenue for future research.

Going forward, it would be interesting to apply our framework to analyze how different
countries adjusted their monetary policies in response to the pandemic. Although only
the Federal Reserve formally changed its monetary policy framework, many other central
banks in advanced economies refrained from responding to rising inflationary pressures
in 2021, which may have influenced private sector views on their resolve to controlling
inflation. In contrast, central banks in several emerging economies reacted more swiftly and
experienced milder increases in inflation. An in-depth analysis of these differing responses
could provide valuable insights into how reputation and credibility considerations shape
monetary policy in the face of large shocks, such as those observed during the pandemic.
We leave this exciting question for future research.
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Jarociński, Marek and Peter Karadi. 2020. “Deconstructing monetary policy surprises—the
role of information shocks.” American Economic Journal: Macroeconomics 12 (2):1–43.

Kekre, Rohan, Moritz Lenel, and Federico Mainardi. 2024. “Monetary policy, segmentation,
and the term structure.” Tech. rep., National Bureau of Economic Research.

Kim, Don H and Jonathan H Wright. 2005. “An arbitrage-free three-factor term structure
model and the recent behavior of long-term yields and distant-horizon forward rates.” .

King, Robert G and Yang K Lu. 2022. “Evolving Reputation for Commitment: The Rise,
Fall and Stabilization of US Inflation.” Tech. rep., National Bureau of Economic Research.

Kroner, Niklas. 2023. “Inflation and attention: Evidence from the market reaction to macro
announcements.” Available at SSRN 4527424 .

Kuttner, Kenneth N. 2001. “Monetary policy surprises and interest rates: Evidence from
the Fed funds futures market.” Journal of monetary economics 47 (3):523–544.

Laubach, Thomas and John C Williams. 2003. “Measuring the natural rate of interest.”
Review of Economics and Statistics 85 (4):1063–1070.

———. 2016. “Measuring the natural rate of interest redux.” Business Economics 51:57–67.

40



McKay, Alisdair, Emi Nakamura, and Jón Steinsson. 2016. “The power of forward guidance
revisited.” American Economic Review 106 (10):3133–3158.

Mertens, Thomas M and John C Williams. 2021. “What to expect from the lower bound on
interest rates: Evidence from derivatives prices.” American Economic Review 111 (8):2473–
2505.

Mertens, Thomas M and Tony Zhang. 2023. “A Financial New Keynesian Model.” Available
at SSRN 4631294 .

Nakamura, Emi and Jón Steinsson. 2018. “High-frequency identification of monetary non-
neutrality: the information effect.” The Quarterly Journal of Economics 133 (3):1283–1330.

Piazzesi, Monika and Eric T Swanson. 2008. “Futures prices as risk-adjusted forecasts of
monetary policy.” Journal of Monetary Economics 55 (4):677–691.

Sack, Brian P and Robert Elsasser. 2004. “Treasury inflation-indexed debt: a review of the
US experience.” Economic Policy Review 10 (1).

Song, Dongho. 2017. “Bond market exposures to macroeconomic and monetary policy
risks.” The Review of Financial Studies 30 (8):2761–2817.

Werning, Iván. 2012. “Managing a Liquidity Trap.” manuscript, Massachusetts .

Woodford, Michael. 2003. Interest and prices: Foundations of a theory of monetary policy. Prince-
ton University Press.

41



Appendix

A The asymptotic distribution of the OLS estimator of d̂ in

equation (9)

Consider a sample of random variables {xt, yt}, with x being the treatment of interest and
y being the outcome. There is a structural break in the sample, given by a deterministic
sequence {Dt} where Dt = 0 before the break, and Dt = 1 after the break. Suppose our
goal is to estimate how the effect of x on y changes after the structural break happens.
We will show that if the first and second moments, and the covariance of x and the errors
are unchanged over the break, then, under appropriate regularity conditions, the estimator
is consistent and we can use the usual OLS procedure with robust standard errors to test
whether the treatment effect of x changes with the structural break.

More formally, we assume that the outcome y and treatment x satisfy

yt = α + βxt + dxtDt + ηt

where ηt are the errors. We show the asymptotic properties of the test under serial inde-
pendence assumption. We also assume that the variables are identically distributed condi-
tional on Dt, but the distribution could differ before and after the break. The exceptions
are that the first and second moments of ηt, xt and their covariance, which we assume to
be unchanged by the break. Additionally, we assume the relevant regularity conditions
on finiteness of moments hold, without loss of generality we impose that the mean of er-
rors is 0, and we assume that the share of observation in the sample from after the break
converges to a number strictly between zero and one. Under these assumptions, we can
consistently estimate d using OLS, the asymptotic distribution of the OLS estimator of d is
normal, and the usual robust variance estimator converges to the asymptotic variance of
the OLS estimator of d. The assumptions and the proof are formalized below.

Assumption 1. Consider sequence of serially independent random variables {xt, ηt} and a deter-
ministic sequence {Dt} with Dt ∈ {0, 1}

1. The random vectors {(xt, ηt)}t are serially independent.

2. Given D ∈ {0, 1}, the random variables {xt, ηt}t,Dt=D are identically distributed .

3. Let ED denote the expectation of a function of xt, ηt for the subsample with Dt = D.

E0 [x] = E1 [x] , E0

[
x2
]
= E1

[
x2
]

, E0

[
η2
]
= E1

[
η2
]

, E0 [ηx] = E1 [ηx] .
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I.e. these moments are constant across the break. Denote the expectation for these moments by
E instead of ED.

4. For all D ∈ {0, 1}, there is δ > 0 s.t. ED

[
η4+δ

t

]
< ∞, ED

[
x4+δ

t

]
< ∞ .

5. E0 [ηt] = E1 [ηt] = 0.

6. ∑t Dt/T → θ ∈ (0, 1).

Proposition 2. Suppose that the sequence of random variables {yt, xt, ηt} and the deterministic
sequence {Dt} with Dt ∈ {0, 1} satisfy

yt = α + βxt + dxtDt + ηt

Let d̂OLS be the OLS estimator of d. Under the assumption 1, as T → ∞

√
T
(

d̂OLS − d
)

d−→ N (0, V)

where

V ≡ ∑
D∈{0,1}

 (θ (1 − D) + (1 − θ) D)

θ (1 − θ)E [x2]2
ED

((xtηt − E [ηx]) + E [ηx]
(xt − E [x])E [x]−

(
x2

t − E
[
x2])

Var (x)

)2
 .

Furthermore, we have that the OLS variance estimator converges in probability to V.

Proof. Define Dt ≡ Dtxt. By Frisch-Waugh-Lowell theorem, we have

d̂OLS = d +
[

Dx⊤MDx
]−1

Dx⊤Mη,

where

M ≡ I − P, P ≡ Z
(

Z⊤Z
)−1

Z, Z ≡


1 x1
...

...

1 xT

 .

Rearrange the equation to obtain

√
T
(

d̂OLS − d
)
=

[
1
T

Dx⊤MDx
]−1 √

T
1
T

Dx⊤Mη,
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where

√
T

1
T

Dx⊤Mη =
√

T

(
1
T ∑

t
Dt (xtηt − E [ηx])

)

− ∑t Dt

T

(
1
T ∑i x2

i

) (
1

∑t Dt
∑t:Dt=1 xt

)
−
(

1
∑t Dt

∑t:Dt=1 x2
t

) (
1
T ∑i xi

)
T−1 ∑i x2

i − (T−1 ∑i xi)
2

√
T

1
T ∑

ℓ

ηℓ

− ∑t Dt

T

(
1

∑t Dt
∑t:Dt=1 x2

t

)
−
(

1
∑t Dt

∑t:Dt=1 xt

)
1
T ∑i xi

T−1 ∑i x2
i − (T−1 ∑i xi)

2

√
T

(
1
T ∑

ℓ

ηℓxℓ − E [ηx]

)

− ∑t Dt

T

(
√

T
(

1
T ∑i x2

i − E
[
x2])+√

T
(

1
T ∑i xi − E [x]

) (
T−1 ∑i xi

) ])
T−1 ∑i x2

i − (T−1 ∑i xi)
2 E [ηx] .

Define

Wt ≡



ηt

Dt (xt − E [x])

Dt
(
x2

t − E
[
x2])

Dt (xtηt − E [ηx])

xt − E [x]

x2
t − E

[
x2]

xtηt − E [ηx]


.

Note that the assumption (1) implies that Lyapunov’s condition holds. By Lindeberg CLT,
we have that √

T
1
T ∑

t
Wt

d−→ N (0, V) ,

where

V = (1 − θ)E0


η2 0 ηH⊤

0 0 0

ηH 0 HH⊤

+ θE1


η2 ηH⊤ ηH⊤

ηH HH⊤ HH⊤

ηH HH⊤ HH⊤

 ,

Ht ≡


(x − E [x])(
x2 − E

[
x2])

(xη − E [ηx])

 ,

with ED [ f (xt, ηt)] being the expectation f (xt, ηt) for t s.t. Dt = D. Next, we apply the
Delta method. Define
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G ≡



0
E[x]

Var(x)E [ηx]

− 1
Var(x)E [ηx]

1

− θE[x]
Var(x)E [ηx]

θ
Var(x)E [ηx]

−θ


, g ≡


E[x]

Var(x)E [ηx]

− 1
Var(x)E [ηx]

1

 .

Applying the Delta method, we obtain that

√
T

1
T

Dx⊤Mη
d−→ N

(
0, G⊤VG

)
.

Finally, note that

1
T

Dx⊤MDx =
∑t Dt

T
1

∑t Dt
∑
h

Dhx2
h −

1

T−1 ∑i x2
i − (T−1 ∑i xi)

2{(
1
T ∑

i
x2

i

(
∑t Dt

T
1

∑t Dt
∑
h

Dhxh

)
−
(

∑t Dt

T
1

∑t Dt
∑
h

x2
hDh

)
1
T ∑

i
xi

)
∑t Dt

T
1

∑t Dt
∑
ℓ

dℓxℓ

+

((
∑t Dt

T
1

∑t Dt
∑h x2

hDh

)
−
(

∑t Dt
T

1
∑t Dt

∑h Dhxh

)
1
T ∑i xi

)
T−1 ∑i x2

i − (T−1 ∑i xi)
2

∑t Dt

T
1

∑t Dt
∑
ℓ

dℓx2
ℓ

}
.

This converges in probability to

θE
[

x2
]
− 0 ∗ E [x]− θ2E

[
x2
]
= θ (1 − θ)E

[
x2
]

.

Hence √
T
(

d̂OLS − d
)

d−→ N (0, V) .

where

V ≡ G⊤VG

θ2 (1 − θ)2
E [x2]

2 , (A.1)

G⊤VG = (1 − θ) θ2g⊤E0

[
HH⊤

]
g + (1 − θ)2 θg⊤E1

[
HH⊤

]
g, (A.2)
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g⊤ED

[
HH⊤

]
g = ED

((xtηt − E [ηx]) + E [ηx]
(xt − E [x])E [x]−

(
x2

t − E
[
x2])

Var (x)

)2
 ,

(A.3)

with D ∈ {0, 1}.The standard OLS estimator would posit that E [ηx] = 0. Under E [ηx] = 0,
the estimand of the OLS variance estimator would correspond to

θE0
[
x2η2]+ (1 − θ)E1

[
x2η2]

θ (1 − θ)E [x2]
2 .

Suppose we were to estimate this by a naive OLS estimator. The OLS robust variance
estimator would correspond to

∑t 1Dt=1
T

1
∑t 1Dt=0

∑t:Dt=0 x2
t η̂2

t +
∑t 1Dt=0

T
1

∑t 1Dt=1
∑t:Dt=1 x2

t η̂2
t

∑t 1Dt=1
T

∑t 1Dt=0
T

[
1
T ∑t x2

t

]2 . (A.4)

We will now show that this in fact converges to G⊤VG. Define

U ≡


1 x1 d1x1
...

...
...

1 xT DtxT

 , Ut ≡
[

1 xt Dtxt

]
, δ ≡


α

β

d

 .

We now want to evaluate the probability limit of 1
∑t 1Dt=D

∑t:Dt=D x2
t η̂2

t for D ∈ {0, 1}. Note
that

∑
t:Dt=D

x2
t η̂2

t = ∑
t:Dt=D

x2
t

(
yt − α̂ − β̂xt − d̂OLSxtDt

)2

= ∑
t:Dt=D

x2
t
(
ηt − Ut

(
δ̂ − δ

))2

= ∑
t:Dt=D

x2
t η2

t + ∑
t:Dt=D

x2
t
[
Ut
(
δ̂ − δ

)]2 − 2 ∑
t:Dt=D

x2
t ηt
[
Ut
(
δ̂ − δ

)]
,

where we used δ̂ − δ =
(
U⊤U

)−1 U⊤η. The probability limit of
(
U⊤U

)−1 U⊤η is given by

(
U⊤U

)−1
U⊤η

p−→ 1
E [x2]Var (x) θ (1 − θ)


(
−E [x]E

[
x2] θ (1 − θ)

)
E [ηx]

E
[
x2] θ (1 − θ)E [ηx]

0

 .
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Therefore Ut
(
δ̂ − δ

)
= E[ηx]

Var(x) (xt − E [x]) + op (1) . Using this, we obtain that the probability

of limit of 1
∑t 1Dt=D

∑t:Dt=D x2
t η̂2

t is

1
∑t 1Dt=D

∑
t:Dt=D

x2
t η̂2

t
p−→ ED

[
x2η2

]
+

(
E [ηx]
Var (x)

)2 (
ED

[
x4
]
− 2ED

[
x3
]

E [x] + E
[

x2
]

E [x]2
)

− 2
E [ηx]
Var (x)

(
ED

[
x3η
]
− ED

[
x2η
]

E [x]
)

.

(A.5)
Note that we can rewrite this probability limit as

ED
[
x2

t η2
t
]
+

(
E [ηx]
Var (x)

)2 (
ED

[
x4
]
− 2ED

[
x3]E [x] + E

[
x2]E [x]2

)
− 2

E [ηx]
Var (x)

(
ED

[
x3η
]
− ED

[
x2η
]

E [x]
)

= ED

[(
(xtηt − E [ηx]) + E [ηx]

(xt − E [x])E [x]−
(
x2

t − E
[
x2])

Var (x)

)2 ]
.

Hence the limit of 1
∑t 1Dt=D

∑t:Dt=D x2
t η̂2

t (A.5) corresponds to A.3. Combined with the fact

that 1
T ∑t x2

t
p−→ E

[
x2], we have that the OLS estimator of variance (A.4) converges to V

(A.1).

B Proof of Proposition 1

Consider the textbook New-Keynesian model (Woodford, 2003; Galí, 2015) described in the
main text with a single monetary policy regime. In the log-linearized model, the dynamics
for the endogenous variables must satisfy

ŷt = Et [ŷt+1]−
1
σ

(
ît − Et

[
π̂t+1 − θ̂t+1

])
(Euler)

π̂t = βEt [π̂t+1] + κŷt + κµ̂t (NKPC)

ît = ρi ît−1 + (1 − ρi)
{

ψππ̂t + ψyŷt
}
+ m̂t (Taylor)

where yt, π̂t and ît are, respectively, output, inflation and nominal interest rates expressed
in log-deviations from steady state; β is the rate of time preference, 1/σ is the intertemporal
elasticity of substitution for the stand-in household, ρi, ψπ, ψy are the parameters describing
the Taylor rule, and κ the slope of the Phillips curve,

κ =
Yss

(
1
ν + σ

)
ϕ (µ − 1)

=

(
1
ν + σ

)
ϕ (µ − 1)
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where ν is the Frisch-elasticity of labor supply.24 The economy is perturbed by three shocks:
a shock to households’ preferences, θ̂t, a markup shock, µ̂t and a monetary shock m̂t. We
assume that the preference and the markup shocks follow independent AR(1) processes:

θ̂t = ρθ θ̂t−1 + σθεθ,t

µ̂t =
(
1 − ρµ

)
log µ + ρµµ̂t−1 + σµεµ,t

while we assume that the monetary shock is iid, m̂t = εm,t.

We now prove Proposition 1, restated here for convenience. (The statement of the propo-
sition is unchanged if the monetary shocks are persistent, m̂t = ρmm̂t−1 + σmεm,t, provided
that k → ∞ and ρy > ρm.)

Proposition. Consider the log-linearized three-equations New Keynesian model. Let ρy ∈ (0, 1) be
the solution to

ρy = ρi − (1 − ρi)
1
σ

ρy

(
ψπ

κ
1−βρy

+ ψy

)
(

1 − ρy − 1
σ

κ
1−βρy

ρy

) (A.6)

where κ is the slope of the Phillips curve, β is the rate of time preference of the representative
household, and σ is the inverse of the elasticity of intertemporal substitution. Let Em

t [ξk] be the
forecast update for variable ξ at date k > t given that we learn of a realization of the monetary shock
at date t,

Em
t [ξk] ≡ E[ξk|I t, εm,t]− E[ξk|I t].

Consider a linear projection of Em
t
[
ît+k − ρi ît+k−1

]
on a constant and Em

t [(1 − ρi)π̂t+k], and
denote by ψ̂OLS,m

π the projection coefficient. Then, the probability limit of ψ̂OLS,m
π is

ψ̂OLS,m
π → ψπ + ψy

(1 − βρy)

κ
. (A.7)

Proof. First, note that the bounded solution to the the log-linearized economy can be rep-
resented by policy functions that are linear in the state variables, [ît−1, θ̂t, µ̂t, m̂t]. We can
write the policy functions for nominal interest rates and the output as

ît = ai ît−1 + bi · ωt (A.8)

yt = ay ît−1 + by · ωt, (A.9)

where br =
(
brθ, brµ, brm

)
, r ∈ {i, y}, ωt =

(
θ̂t, µ̂t, m̂t

)
and the coefficients are functions of

24Steady state output, Yss, is normalized to 1.
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model parameters. We will show next, using the method of undetermined coefficients, that
ai is the solution to

ai = ρi − (1 − ρi)
1
σ

ai

(
ψπ

κ
1−βai

+ ψy

)
(

1 − ai − 1
σ

κ
1−βai

ai

) (A.10)

with |ai| < 1.

From the linearity of (Taylor) and the iid assumption on monetary shocks, it follows that

ψ̂OLS,m
π → ψπ + ψy

Cov (Em
t [π̂t+k], Em

t [ŷt+k])

Var (Em
t [π̂t+k])

. (A.11)

We now express the bias, Cov(Em
t [π̂t+k],Em

t [m̂t+k])
Var(Em

t [π̂t+k])
, in terms of the structural parameters of

the model. Given the policy functions we have

ŷt−1 = ay ît−2 + by · ω̂t−1,

and
ît−1 = ai ît−2 + bi · ω̂t−1.

Combining these two equations with (A.9) yields

ŷt = ρyŷt−1 + c · ωt−1 + by · ωt, (A.12)

where c =
(
aybi − aiby

)
and ρy = ai.

We now use equations (A.9) and (A.12) to compute the revision in the forecast of ŷt+k

conditional on an innovation εmt in period t. From (A.9), the instantaneous update is

Em
t [ŷt] = bymεm,t.

Iterating (A.12) forward, we have

ŷt+k = ρyŷt+k−1 + c · ωt+k−1 + by · ωt+k

= ρk
yŷt +

k−1

∑
j=0

ρ
j
y
(
by · ωt+k−j

)
+

k−1

∑
j=0

ρ
j
y
(
c · ωt+k−1−j

)
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Therefore,

Em
t [yt+k] =ρk

yEm [yt] + bym

k−1

∑
j=0

ρ
j
yEm [m̂t+k−j

]
+ cm

k−1

∑
j=0

ρ
j
yEm [m̂t+k−1−j

]
=ρk−1

y
(
ρybym + cm

)
εm,t (A.13)

where the second equality follows from Em
t
[
m̂t+j

]
= 0 for j ≥ 1.

We now use the Phillips curve to obtain a similar expression for inflation. Solving
(NKPC) forward, we have

π̂t+k = κ
∞

∑
j=0

βjEt+k
[
ŷt+k+j

]
+ κ

∞

∑
j=0

βjEt+k
[
µ̂t+k+j

]
.

Then,

Em
t [π̂t+k] = κ

∞

∑
j=0

βjEm
t
[
ŷt+k+j

]
= κ

∞

∑
j=0

βj
(

ρ
k−1+j
y

(
ρybym + cm

))
εm,t

= κ
ρk−1

y

1 − βρy

(
ρybym + cm

)
εm,t (A.14)

Then, using equation (A.13) and (A.14), we have

Cov (Em
t [π̂k], Em

t [ŷk])

Var (Em
t [ŷk])

=
1 − βρy

κ
(A.15)

as wanted.

To complete the proof, we use the method of undetermined coefficients to express ρy = ai

as a function of the model structural parameters. To do so, let’s set the exogenous state
variables at t − 1 and t to zero. Therefore,

ît = ai ît−1 (A.16)

ŷt = ay ît−1 (A.17)

and recall that ρy = ai. Using (NKPC) we have that

π̂t =
κ

1 − βai
ŷt. (A.18)
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Substituting (A.16), (A.17) and (A.18) into (Taylor) yields

ai = ρi + (1 − ρi)

{
ψπ

κ

1 − βai
+ ψy

}
ay. (A.19)

Next, substituting (A.16), (A.17) and (A.18 into (Euler) yields (note that r̂n
t = 0)

ay = aiay −
1
σ

(
ai −

κ

1 − βai
aiay

)
. (A.20)

Combining (A.19) and (A.20) yields

ai = ρi − (1 − ρi)
1
σ

ai

(
ψπ

κ
1−βai

+ ψy

)
(

1 − ai − 1
σ

κ
1−βai

ai

)
completing the proof.

C Sensitivity analysis

C.1 Actual expectations of inflation and interest rates

In this section we provide some details on how we estimate actual expectations of inflation
and nominal interest rates, used in the sensitivity analysis of Section ??.

Inflation expectations. The Survey of Professional Forecasters (SPF) asks respondents
about their expectation of average inflation over the next five and ten years. Such survey-
based measures of inflation expectations should, in contrast to those obtained from asset
pricing, be free of inflation risk premiums. We can therefore use the survey responses as
measure of actual, P-measure, expectations. Unfortunately, these survey are conducted on
a quarterly frequency, while our approach relies on high frequency variation in the data.
We follow the insight of Aronovich and Meldrum (2021) and use the observed data from
the SPF to estimate the functional relation between actual and risk-neutral expectation of
future inflation—discussed in Section 3.2—and subsequently use the daily data on inflation
compensation to obtain an high frequency measure of actual expectations. Specifically, we
estimate the following relation

SPF(n)
t = βn,0 + βn,1 IC(2y)

t + βn,2 IC(5y)
t + βn,3 IC(10y)

t + βn,4i(2y)
t + u(n)

t , (A.21)
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Figure A-1: Risk premia correction for inflation

for n = 5y, 10y.

The SPF provides historical response deadlines and we line up the survey responses
with the average nominal yield and inflation compensation data from the business week
prior to the deadline. The regressions are estimated on a 7 year rolling sample to take into
account any structural instability or potential non-linearity. Using the resulting regression
coefficients and the daily inflation compensation data, we can calculate fitted values on a
daily basis.25

Figure A-1 plots the resulting regression fit in the two top panels. The fitted values
track the broad movements in the survey-implied expectations quite well, and the implied
R2 is around 70 and 80 percent for the 5-year and 10-year horizons, respectively. Those
values are only quarterly, when the survey is conducted. But the right-hand side variables
are available at daily frequency, so we can use equation (A.21) to interpolate the surveys
to daily values. The lower-left panel of Figure A-1 plots the implied daily values for the
5-year and 10-year average inflation expectations. The resulting daily series have some
intuitive properties: the 5-year average expectations are more volatile than the 10-year av-
erage expectations and they both increased following the pandemic when realised inflation
spiked.

Given the implied actual expectations, we can back out the implied inflation risk pre-
mium as IRP(n)

t = IC(n)
t − ˆSPF(n)

t . In theory, the inflation risk premium should be positive

25The question about the average expected inflation rate over the next five years was only included in
2005Q3, but our approach allows us to backcast what the financial data suggest that those expectations
would have been between 2000 and 2005Q3 using the first available set of regression coefficients.
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Figure A-2: Risk premia correction for nominal interest rates

if inflation increases in bad times (when the stochastic discount factor is high) and negative
otherwise. Through the lens of a standard New Keynesian model, this implies that the
inflation risk premium is positive if the economy is dominated by supply type shocks that
move growth and inflation in opposite directions. That is because a negative supply shock
increases inflation and devalues the real value of the fixed nominal payments of nominal
bonds at the exact time where growth is low and the payments are valued the most. On
the other hand, inflation risk premiums should be negative if the economy is dominated by
demand type shocks. The lower-right panel of Figure A-1 plots our implied inflation risk
premium estimates. The fact that this estimate of the inflation risk premium is mostly neg-
ative over the sample indicates that the economy has been dominated by demand shocks
over this period. This is consistent with Campbell, Pflueger, and Viceira (2020) and Song
(2017), who argue that the stock-bond correlation changed sign around year 2000 as a result
of demand type shocks becoming dominant relative to supply type shocks. In addition, we
can see that the inflation risk premium increases sharply in the post pandemic recovery,
turning positive in 2021-2022—lending support to the views that this period was character-
ized by large supply shocks.

Expectations of nominal interest rates. Unfortunately, the SPF does not ask a similar
questions for short-term nominal interest rates. In order to obtain a measure of the actual
expectations of future nominal interest rate, we use the model of Kim and Wright (2005) to
estimate of the nominal term premium. This is a standard affine term structure model and
it is maintained by staff at the Federal Reserve Board, who makes the estimates available
at daily frequency on the Federal Reserve Board website. The left panel of Figure A-2
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Table A-1: Additional sensitivity

(1) (2) (3) (4)
Baseline ρi = 0.7 ρi = 0.9 Information effect

d (10 year avg) −0.54⋆⋆⋆ −0.49⋆⋆⋆ −0.64⋆⋆⋆ −1.27⋆⋆⋆

(0.11) (0.09) (0.16) (0.46)

d (5 year avg, 1-5 ) −1.05⋆⋆⋆ −0.83⋆⋆⋆ −1.55⋆⋆⋆ −1.98⋆⋆⋆

(0.15) (0.12) (0.25) (0.53)

d (5 year avg, 6-10 ) −0.13 −0.15⋆ −0.06 −0.49
(0.10) (0.08) (0.14) (0.35)

N. obs. 4019 4019 4019 208

Note: The table reports sensitivity analysis to the baseline results reported in Table 2. Column (1) restates
the baseline results, column (2) uses ρi = 0.7, column (3) uses ρi = 0.9, column (4) estimates equation (9)
only on monetary events that satisfy the sign restrictions discussed in the text. Standard errors are robust
to heteroscedasticity and autocorrelation. One star indicates significance at the 10 percent level, two starts
indicate significance at the 5 percent level, and three stars indicate significance at the 1 percent level.

plots these estimates of daily values for the 5-year and 10-year average nominal short rate
expectations, while the right panel of the figure plots the estimates of 5-year and 10-year
nominal term premiums.

C.2 Additional sensitivity

Robustness to choice of ρi. In our baseline specification, we fixed ρi = 0.8 at an annual
frequency. To be sure that this choice is not critical for our results, we conduct a robustness
exercise. Table A-1 presents the results if we instead set ρi = 0.7 and ρi = 0.9. The results
show that our main result is intact and that point estimates are not vastly different if we
vary our choice of ρi.

Robustness to the Fed information effect. In section 3.1 we have proposed a way to test
for a structural break of the monetary policy rule even when the latter features an output
gap component. The test consists in estimating equation (9) conditioning on "monetary
events", and a key assumption for its validity is that during these days investors learn
new information only about the conduct of monetary policy and not about the state of the
economy. Some important contributions in the literature, however, suggest that surprises
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around these events also reflect that the central bank reveals its private information about
the current state of the economy to investors, see Nakamura and Steinsson (2018).26 This
"Fed information effect" can confound the measurement of monetary shocks and invalidate
our identification strategy, especially if the type of news about the state of the economy that
are revealed around monetary announcements differ between the pre and post pandemic
period.

We control for this "Fed information effect" by leveraging the insight in Jarociński and
Karadi (2020): we compute innovations to stock prices around monetary events, and restrict
the sample only to events with changes to short rate expectations and changes to stock
prices (SP500 index) that are in opposite direction. The logic of this sign restriction is
that, by focusing on those events, we mitigate the possibility of including events where
the unexpected tightening of the Fed funds rate is caused by a revelation of positive news
about the state of the economy. Column (4) in Table A-1 reports the estimates of d when
we restrict the sample to these events. We can see that our two main empirical findings
hold in this restricted sample too, and the point estimates are quite comparable to those
reported in Table 2 in the main text.27

Robustness to potential liquidity premiums. Because the inflation compensation mea-
sure that we use in our baseline implementation is based on differences in the yields be-
tween nominal and inflation protected bonds, it is potentially affected by differences in
liquidity premia/convenience yields on these assets due to a preference for holding nomi-
nal bonds over TIPS. This premium may vary over time, as investor may prefer more liquid
assets in times of market stress, for example. Overnight Index Swaps (OIS) tied to the
federal funds rate and inflation-linked swaps (ILS) should in principle reflect the same in-
formation as nominal bonds and the differential yield on nominal and real bonds. These
swaps are thought to be less affected by liquidity premiums, but we also have a shorter
sample of historical rates. We use the available sample to check the robustness of our re-
sults. For the robustness exercise, we implement the baseline regression but for the 5-year
maturity, because we then have a reasonable long sample with both OIS and ILS rates
available since March 2005. On this sample, we have a total of 332 monetary events. The
regression yields d̂ = −0.95 with a t-stat of 2.23, thus similar in magnitude to our baseline
results and statistically significant at the usual 5 percent level.

26Bauer and Swanson (2023) offer a critical view of the empirical relevance of this issue.
27Our results are robust to other types of sign restrictions consistent with the logic of Jarociński and

Karadi (2020), for example restricting the sample to events characterized by a negative correlation between
innovation to short rate expectations and expected future inflation (one year horizon).
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D Data

Nominal Treasury Yields, Percent, Not Seasonally Adjusted, daily values. Maturities be-
tween 1 and 10 years, accessed at https://www.federalreserve.gov/data/nominal-yield
-curve.htm.

Inflation Compensation, Percent, Not Seasonally Adjusted, daily values. Maturities be-
tween 2 and 10 years, accessed at https://www.federalreserve.gov/data/tips-yield-c
urve-and-inflation-compensation.htm.

S&P500 Index, Not Seasonally Adjusted, daily values.

Inflation Expectations, Percent, Not Seasonally Adjusted, Quarterly values. The Survey of
Professional Forecasters ask for average expected inflation over the next five and ten years.

Short-rate Expectations. Percent, Not Seasonally Adjusted, daily values. The expectations
measure the average expected short-rates over a given horizon, based on Kim and Wright
(2005), with horizons of 1 through 10 years available from https://www.federalreserve.g

ov/data/three-factor-nominal-term-structure-model.htm.

Overnight Index Swap (OIS) rates, Percent, Not Seasonally Adjusted, daily values. Matu-
rities between 1 and 10 years. The swap contract is tied to the federal funds rates.

Inflation-Linked Swap (ILS) rates, Percent, Not Seasonally Adjusted, daily values. Matu-
rities between 1 and 10 years. The swap contract is tied to US CPI.

Employment Level [CE16OV], Thousands of Persons, Seasonally Adjusted. We de-trend
this series by estimating the following regression with ordinary least squares

log(yt) = a0 + a1t + a2t2 + εy,t,

where log(yt) is the logarithm of the employment level and t is calendar time. The resid-
ual of this regression, ε̂y,t is the de-trended employment level series that we use in the
application.

Federal Funds Effective Rate [FEDFUNDS], Percent, Not Seasonally Adjusted, quarterly
averages of monthly figures.

Consumer Price Index for All Urban Consumers: All Items in U.S. City Average [CPI-
AUCSL], Index 1982-1984=100, Seasonally Adjusted. Quarterly data aggregated averaging
over monthly values. We take the percent change from the previous quarter.
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E Quantitative Analysis

In this Appendix we discuss details of the estimation of the New Keynesian model and of
the main counterfactual reported in Section 4 of the paper.

E.1 Estimation of the New Keynesian model

We denote the state vector with st = (st, ît−1, π̂t−1) =
(
ξt, εm,t, µt, θt, ît−1, π̂t−1

)
where π̂t−1

is the average inflation in the previous N − 1 periods, and with Θ the vector collecting all
the structural parameters of the model. The structural parameters are those governing pref-
erences and technology, [σ, β, ν, χ, ϕ, µ], those governing policy, [π⋆, ρi, ψy, ψπ(H), ψπ(D), N]

and those governing the evolution of the shocks, [P, σµ, ρθ, σθ, ρµ, σµ]. We consider the per-
turbation approach of Foerster, Rubio-Ramírez, Waggoner, and Zha (2016) to obtain a nu-
merical solution of the two-regime New Keynesian model. This approach leads to the state
space representation for control variables yt and state variables st given by:

yt = T1(ξt; Θ) · st

st = T2(ξt; Θ) · st−1 + R(ξt; Θ) · εt
(A.22)

where T1(·), T2(·), and R(·) are perturbation matrices and εt collects the structural shocks,[
εm,t, εµ,t, εθ,t

]
. Note that the perturbation matrices depend on the regime ξt, which itself

follows a two-state Markov process with transition matrix P.

As described in the main text, we fix a subset of model parameters, [σ, ν, µ, χ, π⋆, β] to
conventional values, and fix PH,D = 0.006 and N = 12. The remaining parameters are
estimated in two steps. In the first step, we estimate the model with just one monetary
policy regime (the H regime) on the 1984:Q1-2019:Q4 sample.28 This allows us to obtain
estimates of the parameters governing the shock processes, the historical monetary policy
rule and the degree of nominal rigidities. In the second step, we calibrate the parameters
governing the monetary policy rule of the D regime—ψπ(D) and PD,D—by fitting the high
frequency evidence in Section 2 and 3 of the paper. We now give some more details on
each of these steps.

Step 1. We approximate the policy functions using a first-order perturbation around the
deterministic steady state and evaluate the likelihood function by applying the Kalman fil-
ter. Panel B of Table 3 reports the prior distribution for the model parameters and statistics

28The approach of estimating the single regime model is justified because its numerical solution is nu-
merically very close to that of the two-regimes model once we condition on ξt = H, due to the fact that the
probability of shifting from the H to the D regime is quite low.
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for the posterior distribution. Draws from the posterior distribution are generated using
the random walk Metropolis Hastings algorithm described in An and Schorfheide (2007).
The proposal distribution is a multivariate normal, with variance-covariance matrix given
by cΣ, where Σ is the negative of the inverse hessian of the log-posterior evaluated at the
posterior mode and c is a constant that we set to obtain roughly a 30% acceptance rate in
Markov chain. We generate 2 Markov chains of 500000 each and discard the first half of
the draws.

Step 2. In the second step we choose the remaining parameters, ψπ(D) and PD,D, so that
the full model replicates the high frequency evidence in Section 2 and 3. For that purpose,
we fix the parameters estimated in step 1 at the posterior mean and choose ψπ(D) and
PD,D to reduce the distance between the estimates of the coefficient d in equation (9) and
their model-implied counterparts. The model-implied counterparts of dk are computed
as follows. We solve the two-regime model using the perturbation approach described in
Foerster et al. (2016), and using this solution we compute the change in the conditional
expectation of nominal interest rates and future inflation k periods from now given that
today we had a one standard deviation monetary shock and that the economy is in regime
ξ, Em[îk − ρi îk−1|ξ] and Em[π̂k|ξ]. For each ξ, we then compute

ψk
π(ξ) =

Em[îk − ρi îk−1|ξ]
Em[(1 − ρi)π̂k|ξ]

.

The model implied d at horizon k is then defined as

dk = ψk
π(ξ = D)− ψk

π(ξ = H).

The parameters ψπ(D) and PD,D are chosen to minimize an unweighted distance between
the model implied dk and our empirical targets. The results are reported in Panel C of
Table 3.

E.2 Counterfactual

We now detail the counterfactual exercise of Section 4.3. We first explain how we use the
particle filter to obtain an estimate of the structural shocks. Next, we describe how we
generate the counterfactual trajectories for output, inflation and nominal interest rates.

Denote by yT = [y1, . . . , yT] the vector collecting observations on employment, inflation
and nominal interest rates and by p(st|yt) the conditional distribution of the state vector
at date t given observations up to period t. We set the structural parameters in step 1
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at their posterior mean, we numerically solve the model, and we apply the particle filter
to the implied non-linear state space system in (A.22) to estimate the density of the state
vector for each t.29 The approximation is done via a set of pairs of particles and weights
{si

t, w̃i
t}N

i=1 that satisfy:

1
N

N

∑
i=1

f (si
t)w̃

i
t →a.s. E[p(st|yt)]

Where si
t = (ξ i

t, εi
m,t, µi

t, θi
t) is a particle (a realization of the state vector) and w̃i

t its weight.
The algorithm consists of 3 steps.

Step 0: Initialization. Set t = 1 and initialize {si
t, w̃i

t = 1}N
i=1 with equal weights.

Step 1: Prediction. For each particle i = 1, . . . , N, obtain a realization for the state
vector si

t|t−1 given si
t−1 by simulating the model forward.

Step 2: Filtering. Assign to each particle si
t|t−1 the weight wi

t = p(yt|si
t|t−1)w̃

i
t−1.

Step 3: Resampling. Rescale the weights {wi
t}N

i=1 so that they add up to one, and
denote these rescaled values {w̃i

t}N
i=1. Sample N values of the state vector with re-

placement from {si
t|t−1, w̃i

t}N
i=1, and denote these draws by {si

t, w̃i
t = 1}N

i=1. If t < T,
set t = t + 1 and go to Step 1. If not, stop.

We set N = 3000000. We apply the particle filter to our data for the 2020:Q3-2022:Q1
period and obtain an estimate for the probability density of the latent states. Figure 4 in the
main text reports the time series for the observables and the average for the latent states,
computed using {si

t, w̃i
t}N

i=1

Once we have estimated the latent states, we can compute the counterfactual trajectories.
Specifically, we feed the model with the realization of the markup shocks, monetary shocks
and discount factor shocks estimated using the historical data, but set the ξt = H for the
whole sample. This gives us the counterfactual path for output, inflation and nominal
interest rate under the scenario in which the monetary authority kept operating using the
historical rule during the recovery from the pandemic. The results of this counterfactual
are reported in Figure 5 in the main text.

29In order to run the particle filter, we add iid measurement errors to each variable in yt. The variance of
these measurement errors is set to 0.5% of the unconditional variance of the series.
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